Refining the Chemical Pulps

  • Chapter
  • First Online:
Eucalyptus Kraft Pulp Refining
  • 16 Accesses

Abstract

After presents a brief description of the refiners evolution, this chapter focuses on what happens inside the refiners, that is, on the mass flow distributions inside the refiners, on how the flakes in suspension are captured by the bars of the refiners’ discs, and how energy is transferred to the pulp causing the desired changes in the fibers in suspension.

The effects of refining on fibers are described and classified according to the structural changes caused to the fibers as well as according to the direct effects of these changes on the properties of the paper produced. Effects on paper machine runability are also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Portal São Francisco, A história do papel. https://www.portalsaofrancisco.com.br/historia-geral/historia-do-papel

  2. Blechschmidt, J.; Heinemann, S. and Süss, H-U. – Mechanical pul**. In: Handbook of Pulp. Volume 2, Section II Ed. Sixta, H. WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim, 2006 pgs. 1069–1148.

    Google Scholar 

  3. Fritoli, C. L.; Kruger, E.; Carvalho, S. K. de P. – História do papel: panorama evolutivo das técnicas de produção e implicações para sua preservação. Revista Ibero-americana de Ciência da Informação, 9 (2): 475–502 (2016).

    Google Scholar 

  4. The invention of paper: the birth of papermaking. https://paper.gatech.edu/early-papermaking

  5. Norman’s, J. – Louis-Nicolas Robert invents the papermaking machine. History of Information.com www.historyofinformation.com/detail.php?id=433.

  6. Kanazawa, T. and Fujita, O. K. – The latest refiner and deflaker designed with a twin rotor and stator system. Jappan Tappi Journal, 52 (4): 62–71 (1998).

    Google Scholar 

  7. Cotterill, P. P. and Brolin, A. – Improving Eucalytpus wood, pulp and paper quality by genetic selection. In: Conference on Silviculture and Improvement of Eucalypts. IUFRO, Salvador: 24-29/08/1997 Volume 1 pgs. 1–13.

    Google Scholar 

  8. Baker, C. F. – Advances in the practicalities of refining. In: Refining and Mechanical Pul** conference. PIRA, Barcelona: 02-03/03/2005 Paper 2.

    Google Scholar 

  9. Cotterill, P. and Macrae, S. – Improving eucalyptus pulp and paper quality using genetic selection and good organization. Tappi Journal, 80 (6):82-89 (1997).

    Google Scholar 

  10. Johansson, A. – Correlations between fibre properties and paper properties. Master’s Thesis in Pulp Technology. Royal Institute of Technology, Stockholm, 2011 49 pgs www.diva-poal.org/smash/get/diva2D:505453/FULLTEXT01

  11. Sorieul, M.; Dickson, A.; Hill, S. J. and Pearson, H. – Plant fibre: molecular structure and biomechanical properties, of a complex living material, influencing Its deconstruction towards a biobased composite. Materials, 9 (618): 1–36; (2016).

    Google Scholar 

  12. Rodés, L. – Ensaios históricos – influência da cultura árabe sobre a refinação das polpas celulósicas. O Papel, 55 (11): 13–15 (1994).

    Google Scholar 

  13. Hubbe. M. A – Flocculation and redispersion of cellulosic fiber suspensions: a review of effects of hydrodiynamic shear and polyeledtolytes. BioResources, 2 (2): 296–331 (2002).

    Google Scholar 

  14. Chevalier-Billosta, V.; Joseleau, J.-P.; Cochaux, A. and Ruel, K. – Tying together the ultrastructural modifications of wood fibre induced by pul** processes with the mechanical properties of paper. Cellulose, 14:141 –152 (2007).

    Google Scholar 

  15. Annergren, G. – Fundamentals of pulp fiber quality and paper properties. In: Pul** Conference. TAPPI, Orlando. 1999 pgs: 29–39

    Google Scholar 

  16. Antolovich, E. – Method of treating bleached pulp on a washer with calcium ions to remove sodium ions. U.S. Patent no 5,273,625 (1993) https://patents.justia.com/patent/5273625.

  17. Ampulski, R. S. – Influence of fiber surface charge on tensile strength. In: Papermakers Conference. TAPPI, Denver. 1985 pg. 9.

    Google Scholar 

  18. Paavilainen, L. – Influence of fibre morphology and processing on the softwood sulphate pulp fibre and paper properties. Doctoral Thesis, Helsinki University of Technology, Helsinki 1993. 155 pgs. www.https://www.elibrary.ru/item.asp?id=6878557

  19. Beghello, L. – The tendency of fibers to build flocs. Abo Akademi University. 1998 58 pgs. http://web.abo.fi/fak/tkf/pap/newpaf/luciano-thesis.pdf

  20. Magaton, A. S.; Colodette, J. L.; Gouvea, A. F. G.; Gomide, J. L.; Muguet, M. C. S. and Pedrazzin, C. – Eucalyptus wood quality and its impact on kraft pulp production and use. Tappi Journal, 8 (8): 32–39 (2009).

    Google Scholar 

  21. Foelkel, C. E. B. and Dalmolin, I. – Improving eucalyptus pulp refining through the control of pulp consistency and stock pH: comparisons at given bulk and given tensile strength. In: Papermakers Conference, TAPPI, Atlanta: 01-04/03/1999 Volume 2 pgs: 751–754

    Google Scholar 

  22. Paavilainen, L. – European prospects for using nonwood fibers. Pulp and Paper International, 40 (6): 61 (1998).

    Google Scholar 

  23. Paavilainen, L. – Quality – competitiveness of Asian short-fibre raw materials in different paper grades. Papperi Ja Puu, 82 (3): 156 (1998).

    Google Scholar 

  24. Foelkel, C. – Madeiras para uso celulósico-papeleiro: formação, ultraestrutura, química e topoquímica. Eucalyptus Newsletter (84) 645 pgs (2020) http://www.eucalyptus.com.br/news/pt_dez2020.pdf

  25. Joutsimo, O. P. and Asikainen, S. – Effect of fiber wall pore structure on pulp sheet density of softwood kraft pulp fibers. BioResources, 8 (2):2719–2737 (2013).

    Google Scholar 

  26. Setasith, S, – Effect of compressive and abrasive refining on structural changes in fiber and paper. Master’s Thesis. Aalto University. Espoo, 2014 84 pgs https://aaltodoc.aalto.fi/bitstream/handle/123456789/13458/master_Setasith_Suchart_2014.pdf?sequence=1&isAllowed=y

  27. Sigl, R. – Low intensity refining of hardwood and deinked pulps with a new generation of filling. Twogether – Paper Technology Journal (8): 7–11 (1999).

    Google Scholar 

  28. Omholt, I. – The effects of curl and microcompressions on the combination of sheet properties. In: International Paper Physics Conference. TAPPI, San Diego, 1999 pg 499–515.

    Google Scholar 

  29. Lindqvist, H. – Improvement of wet and dry web properties in papermaking by controlling water and fiber quality. Academic Dissertation, Åbo Akademi University. Åbo., 2013 85 pgs

    Google Scholar 

  30. Pikulik, I. I. – Wet pressing – operating aspects. In: TECH95 Theory and Practice of Papermaking Course. CPPA, Ottawa, 1995 Section C3 29 pgs.

    Google Scholar 

  31. Tiikkaja, E.; Kauppinen, M. and Glorigiano, P. – Fibre dimensions, their effect on paper properties and required measuring accuracy. In: XXXI Congresso Anual de Celulose e Papel. ABTCP, São Paulo, 1998 pgs. 397–402.

    Google Scholar 

  32. Kramer, J. D. – Pul** eucalyptus – a review. In: XXXI Congresso Anual de Celulose e Papel. ABTCP, São Paulo, 1998 pgs.: 615–632.

    Google Scholar 

  33. Malan, F. S.; Male, J. R. and Venter, J. S. M. – Relationship between the properties of eucalyptus wood and some chemical, pulp and paper properties. Paper Southern Africa, 14 (1): 6–16 (1994).

    Google Scholar 

  34. Kärenlampi, P. – The effect of pulp fiber properties on the tearing work of paper. Tappi Journal, 79 (4): 211–216 (1996).

    Google Scholar 

  35. Retulainen, E.; Moss, P. and Nieminen, K. – Effect of fines on the properties of fibre networks. In: 10th Fundamental Research Symposium Proceedings. Mechanical Engineering Publications, London, 1993 Volume 2 pgs. 727–769.

    Google Scholar 

  36. Luce, J. – Paper structure. In: Wet-End Operations Short Course. TAPPI, Cincinnati, 1994 Paper 2 pgs. 9–23.

    Google Scholar 

  37. Hatton, J. V. – Kraft pul** of second-growth Jack pine. Tappi Journal, 76 (5): 105–113 (1993).

    Google Scholar 

  38. Philipp, P. and D’Almeida, M. L. O. – Celulose e papel – tecnologia de fabricação de papel – Volume 2. SENAI/IPT, São Paulo, 1988 402 pgs.

    Google Scholar 

  39. Ferreira, P. J. and Figueiredo, M. M. – Efeito do cozimento e da refinação nas dimensões transversais das fibras de E. globulus. O Papel, 62 (01: 73–80 (2000).

    Google Scholar 

  40. Green, S. I. – Pulp fibre drag coefficient. Appita Journal, 59 (2): 120–126 (2006).

    Google Scholar 

  41. Pere, J.; Sika-Aho, M. and Vikar, L; – Biomechanical pul** with enzymes: Response of coarse mechanical pulp to enzymatic modification and secondary refining. Tappi Journal, 83 (5): 8 pgs (2000).

    Google Scholar 

  42. Fiserová, M.; Gigac J.; Stankovská e Opálená, E. – Influence of bleached softwood and hardwood kraft pulps on tissue paper properties. Cellulose Chemistry and Technology., 53 (5–6): 469–477 (2019)

    Google Scholar 

  43. Mithrush, T. L. – An experimental study of fluid flow in a low consistency refiner. Master’s Thesis. The University Of British Columbia, Vancouver, 2013 102 pgs www.open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0165714

  44. Foelkel, C. – The Eucalyptus fibers and the kraft pulp quality requirements for paper manufacturing. Eucalyptus Online Book & Newsletter.- Chapter 3 (Feb/Mar) 2007 – 42 pgs www.eucalyptus.com.br/capitulos/ENG03_fibers.pdf

  45. Zhang, C.; Chen, M.; Keten, S.; Coasne, B.; Derome, D. and Carmeliet, J. – Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis. Materials Science, 7 (37): eab8919 (2021).

    Google Scholar 

  46. Botková, M.; Šutý, Š.; Jablonský, M.; Kučerková, L. and Vrška, M. – Monitoring of kraft pulps swelling in water. Cellulose Chemistry and Technology, 47 (1–2): 95–102 (2013).

    Google Scholar 

  47. Guo, X.; Dong, J.; Liu, H.; Duan, C.; Yang, R. and Qi, K. – Effect of combined refining plates with different bar angles on paper properties during mixed pulp refining. Journal of Korean Wood Science and Technology, 48 (5): 581–590 (2020).

    Google Scholar 

  48. Sjöberg, J. C.; Häggquist, M.; Wikström, M.; Lindström, T. and Höglund, H. – Effects of pressurized high consistency refining on sheet density. Nordic Pulp and Paper Research Journal, 23 (1): 39–45 (2008).

    Google Scholar 

  49. Kiviranta, A. J. – Fiber and forming-related mechanisms affecting formation. In: Papermakers Conference. TAPPI, Philadelphia, 1996 pgs. 239–245.

    Google Scholar 

  50. Paavilainen, L. – Importance of cross-dimensional fibre properties and coarseness for the characteristics of softwood sulphate pulp. Paperi ja Puu, 75 (5): 35–43 (1993)

    Google Scholar 

  51. Yan, H.; Norman, B.; Lindström, T. and Ankefors, M. – Fibre length effect on fibre suspension flocculation and sheet formation. Nordic Pulp and Paper Research Journal, 21 (1): 30–35 (2006).

    Google Scholar 

  52. Lindholm, C.-A. – Determining optimum combinations of mechanical pulp fractions. Paperi ja Puu, 65 (4): 243–245, 247–250 (1983).

    Google Scholar 

  53. Ramezani, O. and Nazhad, M. M. – The effect of refining on paper formation. TAPPSA Technical Articles http://www.tappsa.co.za/html/The_effect_of_refining_on_paper_formation.html

  54. Helmer, R. J. N.; Covey, G. H.; Raverty, W. D.; Vanderhoek, N, Sardjono, A. A. and Chau, T. – Laboratory simulation of the effects of refining on paper formation. Appita Journal, 59 (4): 291–296 (2006).

    Google Scholar 

  55. Gurnagul, N., Page, D. H. and Seth, R. S. – Dry sheet properties of Canadian hardwood kraft pulps. Journal of Pulp and Paper Science, 16 (1): 36–41 (1990).

    Google Scholar 

  56. Kerekes, R. J. and Schell, C. J. – Effects of fiber length and coarseness on pulp flocculation. Tappi Journal, 78 (2): 133–139 (1995).

    Google Scholar 

  57. Higgins, H. G. – Speed reduction in disc refining: A strategy for saving energy. In: TAPPI Papermakers Conference. TAPPI, Portland, 1983 pgs. 141–142.

    Google Scholar 

  58. Walmsley, M. R. W.; Weeds, Z. and Atkins, M. – Pulp consistency and rotor back-flushing effects on pressure screen reject thickening. Journal of Pulp and Paper Science, 34 (1): 59–68 (2008).

    Google Scholar 

  59. Lundin, T. – Tailoring pulp fibre properties in low consistency refining. Academic dissertation, Åbo Akademi University, Abo, 2008 259 pgs www.researchgate.net/publication/261286869_Tailoring_pulp_fibre_properties_in_low_consistency_refing_diss/link/543cfc4e0cf2c432f7423263

  60. Pikulik, I. I.; McDonald, J. D.; Mentele, C. J. and Lange, D. V. – The refining, forming, and pressing on fine paper quality. Tappi Journal, 81 (6): 122–130 (1998).

    Google Scholar 

  61. Bither, T. W. and Waterhouse, J. – Strength development through refining and wet pressing. Tappi Journal, 75 (11): 201–208 (1992).

    Google Scholar 

  62. Lynd, L. R.; Weimer, P. J.; van Zyl, W. H. and Pretorius, I. S. – Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, (3): 506–577 (2002) https://doi.org/10.1128/MMBR.66.3.506-577.2002

  63. Görres, J., Amiri, R.; Grondin, M. and Wood, J. R. – Fibre collapse and sheet structure. In: 10th Fundamental Research Symposium, PIRA, Oxford, 1993 pgs. 385–310.

    Google Scholar 

  64. Pulkkinen, I. – From eucalypt fiber distributions to technical properties of paper. Doctoral Thesis. Aalto University School of Science and Technology, Espoo, 2010 74 pgs https://research.aalto.fi/en/publications/from-eucalypt-fiber-distributions-to-technical-properties-of-pape

  65. Courchene, C. E.; Peter, G. F. and Litvay, J. – Cellulose microfibril angle as a determinant of paper strength and hygroexpansivity in Pinus taeda L. Wood and Fiber Science, 38 (1): 112–120 (2006).

    Google Scholar 

  66. Law, K. N. and Koran, Z. – Effect of press drying on paper properties. Appita, 34 (5): 38–390 (1981).

    Google Scholar 

  67. Silva, R. P. and Oliveira, R. C. de – O efeito da refinação na recuperação das propriedades físico-mecânicas de papéis reciclados de pinus. O Papel, 63 (8):87–99 (2003).

    Google Scholar 

  68. Pikulik, I. I. – Pressing – theoretical aspects. In: Theory & Practice of Papermaking Course. CPPA, Ottawa, 1995 Section C1 18 pgs.

    Google Scholar 

  69. Chen, Y.; Wan, J.; Zhang, X.; Ma, Y. and Wang, Y. – Effect of beating on recycled properties of unbleached eucalyptus cellulose fiber. Carbohydrate Polymers, 87: 730–736 (2012)

    Google Scholar 

  70. Dean, G. H. – Objectives for wood fibre quality and uniformity. In: Eucalypt Plantations: Improving Fibre Yield and Quality Conference. CRCTHF/IUFRO, Hobart: 19-24/02/1995 pgs. 5–9.

    Google Scholar 

  71. Forgacs, O. L. – The Characterization of Mechanical Pulps. Pulp and Paper Magazine Canada, 64 (Convention Issue): 89–115 (1963).

    Google Scholar 

  72. Retulainen, E. – Fibre properties as control variables in papermaking? Part 1: fibre properties of key importance in the network. Paperi ja Puu, 78 (4): 187–194 (1996).

    Google Scholar 

  73. Santos, A.; Anjos, O. M. and Simões, R. M. S. – Influence of kraft cooking conditions on the pulp quality of Eucalyptus globulus. Appita Journal, 61 (2): 148–155 (2008).

    Google Scholar 

  74. Stratton, R. A. – Characterization of fibre-fibre bond strength from out-of-plane paper mechanical properties. Journal of Pulp and Paper Science, 19 (1): 7–12 (1993).

    Google Scholar 

  75. Gurnagul, N. and Seth, R. S. – Wet-web strength of hardwood kraft pulps. In: 83rd Annual Meeting Technical Section. CPPA, Montreal, 1997 Book B pgs. B137–145.

    Google Scholar 

  76. Demuner, B. J.; Manfredi, V. and Claudio-da-Silva Jr., E. – O refino da celulose de eucalipto – uma análise fundamental. O Papel, 52 (8): 44 – 54 (1990).

    Google Scholar 

  77. McKenzie, A. W. – Interpretation of pulp evaluation results. Appita Journal, 38 (4): 284–290 (1985).

    Google Scholar 

  78. Stevens, W. V. – Refining. In: Pulp and Paper Manufacture – Volume 6. Ed. Hagemeyer, R.W., Manson, D.W. and Kocurek, M.J. The Joint Textbook Committee of the Paper Industry, Atlanta/Montreal, 1992: 187–219 (1992).

    Google Scholar 

  79. Joutsimo, O. and Robertsén, L. – The effect of mechanical treatment on softwood kraft pulp fibers.- pulp and fiber properties. Maderas, Ciencia y Tecnologia, 18 (3): 17 pgs (2016).

    Google Scholar 

  80. Koskenhely, K. – Refining of chemical pulp fibres. In: Papermaking Science and Technology. Volume 8 – Paper making part 1 – stock preparation and wet end, Chapter 4. Ed. Paulapuro, H. Finnish Paper Engineers’ Association/Paperi ja Puu Oy, Helsinki: 2007.

    Google Scholar 

  81. Sharkawya, K. E.; Haavistob, S.; Koskenhely, K. and Paulapuroa, H. – Effect of fiber flocculation and filling design on refiner loadability and refining characteristics. BioResources, 3 (2): 403–424 (2008).

    Google Scholar 

  82. Johnston, R. E.; Li, M. and Waschl, R. – Eucalypt fibre size fractions: modeling and measuring their effect on sheet properties. Appita Journal, 50 (4): 307–312, 318 (1997).

    Google Scholar 

  83. Blomstedt, M.; Kontturi, E. and Vuorinen, T. – Optimising CMC sorption in order to improve tensile stiffness of hardwood pulp sheets. Nordic Pulp and Paper Research Journal, 22 (3):336–342 (2007).

    Google Scholar 

  84. Klungness, J. H.; Sykes, M. S.; Tan, F.; Abubakr, S. R. and Eisenwasser, J. – Effect of FL on paper properties. In: Papermarkers Conference. TAPPI, Chicago, 1995 pgs. 533–538.

    Google Scholar 

  85. Page, D. H.; Seth, R. S. and De Grace, J. H. – The elastic modulus of paper. Tappi Journal, 62 (9): 99–102 (1979).

    Google Scholar 

  86. Horn, R. A. – Morphology of pulp fiber from hardwoods and influence on paper strength. Forest Products Laboratory, Research Paper 312, 12 pgs (1978) https://www.fpl.fs.fed.us/documnts/fplrp/fplrp312.pdf

  87. Kärenlampi, P.; Niskanen, K. J. and Alava, M. – Fracture toughness of paper: role of fiber properties and fiber bonding. In: International Paper Physics Conference. CPPA/TAPPI, Niagara-on-the-lake, 1995. pgs. 39–46.

    Google Scholar 

  88. Seth, R. S. – Optimizing reinforcement pulps by fracture toughness. Tappi Journal, 79 (1): 170–178 (1996).

    Google Scholar 

  89. Seth, R. S. – Measurement of in-plane fracture toughness of paper. In: Papermakers Conference. TAPPI, Philadelphia, 1996 pgs. 395–402.

    Google Scholar 

  90. Yan, N. and Kortschot, M. T. – Modelling of out-of-plane tear energy absorption of paper. Appita, 49 (3): 177–180 (1996).

    Google Scholar 

  91. Kettunen, H. and Niscanen, K. – On the in-plane tear test. Tappi Journal, 83 (4): 83 (2000).

    Google Scholar 

  92. Lindström, T.; Wågberg, L. and Larsson, T. – On the nature of joint strength in paper – a review of dry and wet strength resins used in paper manufacturing. In: 13th Fundamental Research Symposium, Cambridge. 2005 pgs. 457–562.

    Google Scholar 

  93. Clark, J. d’A. – Mill beating and Refining, In: Pulp Technology and Treatment of Paper. Miller Freeman, San Francisco, 1978 516 pgs.

    Google Scholar 

  94. Seth, R. S.; Page, D. H.; Barbe, M. I. C. and Jordan, B. D. – The mechanism of the strength and extensibility of wet webs. Svensk Papperstiding, 87 (6): 36–43 (1984).

    Google Scholar 

  95. Kulachenko, A. and Uesaka T. – Direct simulations of fiber network deformation and failure. Mechanics of Material, 51:1–14 (2012).

    Google Scholar 

  96. Seth, R. S. – Fiber quality factors in papermaking – II: the importance of fibre coarseness. In: Materials Interactions Relevant to the Pulp, Paper and Wood Industries. Research Society Symposium, San Francisco, 1990 Volume 197 pgs. 143–161.

    Google Scholar 

  97. Cowan, W. F. – Comparing wet zero span tensile testing with conventional laboratory pulp evaluation. In: Process and Product Quality Conference. TAPPI, Savannah, 1994 pgs. 47–50.

    Google Scholar 

  98. Cowan, W.F. – Explaining handsheet tensile and tear in terms of fiber-quality numbers. Tappi Journal, 78 (1) 101–106 (1995).

    Google Scholar 

  99. Kärenlampi, P.; Suur-Hamari, H. T.; Alava, M. J. and Niskanen, K. J. – The effect of pulp fiber properties on the in-plane tearing work of paper. Tappi Journal, 79 (5): 203–210. (1996).

    Google Scholar 

  100. Howard, R. C.; Poole, R. and Page, D. H. – Factors analysis applied to the results of a laboratory beating investigation. Jornal of Pulp and Paper Science, 20 (5): 137–144 (1994).

    Google Scholar 

  101. Seth, R. S. and Page, D. H. – Fibre properties and tearing resistance. Tappi Journal, 71 (2): 103–107 (1988).

    Google Scholar 

  102. Bourmaud, A.; Morvan, C.; Bouali, A.; Placet, V.; Perre, P. and Baley, C. – Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. In: Composites Week @ Leuven and Texcomp Conference, Leuven. 2013 pgs. 2–4.

    Google Scholar 

  103. Paavilainen, L. – Importance of coarseness and fiber length in papermaking. In: Process Engineering Handbook. Ed. Process Engineering Committee of the Engineering Division. Tappi Press, Atlanta, 1992, 2nd Edition Appendix: 98–108.

    Google Scholar 

  104. Seth, R. S. – Beating and refining response of some reinforcement pulps. Tappi Journal, 82 (3): 147–155 (1999).

    Google Scholar 

  105. Melander, E. – The effect of charged groups on the beatability of pulp fibres. Bachelor Thesis, KTH, Stockholm, 2011 31 pgs https://www.diva-portal.org/smash/get/diva2:425918/FULLTEXT01.pdf

  106. Jonhston, R. E.; Li, M. and Waschl, R. – Eucalypt fibre size fractions: modeling and measuring their effect on sheet properties. Appita Journal, 50 (4):307–311 (1997).

    Google Scholar 

  107. Praire, B. C. – Measurement of forces in a low consistency refiner. Master’s Thesis, Department of Mechanical Engineering. University of Victoria, Victoria, 2005 151 pgs

    Google Scholar 

  108. Valeri, S.; Aguiar, I. B. de; Banzatto, D. A. and Alvarenga, S. F. – Variação da densidade básica da madeira de E. grandis Hill ex-Maiden com a altura do caule e aplicação de fósforo e calcário dolomítico. In: VI Congresso Florestal Brasileiro. SBS/SBEF, Campos do Jordão, 1990 Volume 3: 746–756.

    Google Scholar 

  109. Batchelor, W. J.; Kure, K. A. and Oullet, D. – Refining and the development of fiber properties. In: Papermakers Conference. TAPPI, Philadelphia, 1996 pgs. 207–214.

    Google Scholar 

  110. Paavilainen, L. – Conformability, flexibility and collapsibility of sulphate pulp fibres. Paperi ja Puu, 75 (9–10): 680 (1993).

    Google Scholar 

  111. Brännvall, E. and Lindström, M. E. – A study on the difference in tensile strength between industrially and laboratory-cooked pulp. Nordic Pulp and Paper Research Journal, 21 (2): 222–226 (2006).

    Google Scholar 

  112. Fiserová, M.; Gigac, J. and Balbercak, J. – Relationship between fibre characteristics and tensile strength of hardwood and softwood kraft pulps. Cellulose Chemistry and Technology., 44 (7–8), 249–253 (2010).

    Google Scholar 

  113. Gao, W. H.; Chen, K. F.; Yang, R. D.; Li, J.; Yang, F.; Rao, G. H. and Tao, H. – Effects of beating on tobacco stalk mechanical pulp. Cellulose Chemistry and Technology, 46 (3–4): 277–282 (2012).

    Google Scholar 

  114. Byrd, V. L. and Fahey, D. J. –How to reduce vessel element picking in printing papers containing Oak. Paper Trade Journal, 153 (47): 54–59 (1969).

    Google Scholar 

  115. Shallhorn, P. M. and Heintze, H. U. – Hardwood vessel picking in the offset printing of uncoated fine papers. Pulp & Paper Canada, 98 (10): 21–24 (1997)

    Google Scholar 

  116. Frazão, F. J. L. – Características da madeira e da polpa kraft não branqueada de Eucalyptus deglupta Blume introduzido na região de Manaus-AM. In: Congresso Anual de Celulose e Papel. ABTCP, São Paulo, 1986 pgs. 79–87.

    Google Scholar 

  117. Josefsson, A. – Ultrasonic refining of chemical pulp fibres. Master’s Thesis. Chalmers University of Technology, Göteborg, 2010 48 pgs

    Google Scholar 

  118. Blomstedt, M.; Panula-Ontto, S.; Kontturi, E. and Vuorinen, T. – Um método para reduzir o arrancamento de valos de folhas de polpa de eucalipto mediante modificação com carboximetilcelulose. O Papel, 69 (2): 35–44 (2008).

    Google Scholar 

  119. Karlsson, H. – New technique for measurement of fibre properties including vessel cells and mix of fibre species. Appita Journal, 61 (3): 192–196 (2008).

    Google Scholar 

  120. Parham, R. A. – Wood structures – hardwood. In: Pulp and Paper manufacture – Volume I – Properties of Fibrous Raw Materials and their Preparation for Pul**. E.: Kocurek, M. J. and Stevens, C. F. B. The Joint Textbook Committee of the Paper Industry, Atlanta/Montreal, 1983, 28–34.

    Google Scholar 

  121. Tateishi, M.; Seino, T.; Ona, T.; Oshima, J.; Adachi, K.; Yokota, S. and Yoshizawa, N. – Rapid assessment of vessel anatomical features by pyrolysis-gas chromatography. In: Eucalyptus in a Changing World Conference. IUFRO, Aveiro, 2004 2 pgs.

    Google Scholar 

  122. Colley, J. – The influence of vessel elements on the picking tendency of eucalypt pulps. Paper Technology, 14: 293–296 (1973).

    Google Scholar 

  123. Lobben, H. T. – The tensile stiffness of paper. Part 1: A model based on activation. Norsk Skogindustri, 29 (12): 311–315 (1975).

    Google Scholar 

  124. Ohsawa, J. – Vessel picking in printing papers. In: Tropical Wood Symposium. Singapore, 1988 pg. 220 [358].

    Google Scholar 

  125. Scott, W. E. – Principles of wet end chemistry. Tappi Press, Atlanta, 1996 185 pgs.

    Google Scholar 

  126. Mokfiensk, A.; Gomide, J.L.; Colodette, J. L. and Oliveira, R.C. de – Importância da densidade e do teor de carboidratos totais na madeira de eucalipto no desempenho da linha de fibras. In Colóquio Internacional sobre Celulose Kraft de Eucalipto, UFV, Viçosa, 2003 pgs. 15–38.

    Google Scholar 

  127. Silva, R. P. and Oliveira, R. C. de – A reciclagem de papéis: uma aboradagem técnica. Folha Florestal (93): 9–11 (1999).

    Google Scholar 

  128. Faust, T. D.; Clark III, A.; Courchene, C. E.; Shiver, B. D. and Beli, M. L. – Effect of intensive forest management practices on wood properties and pulp yield of young, fast growing Southern pine. In: International Environment Conference. TAPPI, Nashiville, 1999 Volume 2 pgs. 501–512.

    Google Scholar 

  129. Giertz, H. W. – The effect of beating on individual fibres. In: Fundamentals of Papermaking Symposium. PIRA Cambridge, 1961 pgs. 389–402.

    Google Scholar 

  130. Maloney, T. C. and Paulapuro, H. – The formation of pores in the cell wall. Journal of Pulp and Paper Science, 25 (12): 430–436 (1999).

    Google Scholar 

  131. Campinhos Jr., E. and Claudio-da-Silva Jr., E. – Silvicultura e melhoramento genético Fforestal. In: VI Congresso Florestal Brasileiro. SBS/SBEF, Campos do Jordão, 1990 Volume I: 83–94.

    Google Scholar 

  132. Silveira, V.; Rosado, S. C. S.; Trugilho, P. F. and Carvalho, D. de – Interação entre clones de Eucalyptus e ambientes definidos pela qualidade de sítio e espaçamentos. In: Silviculture and Improvement of Eucalypts Conference. IUFRO, Salvador, 1997 Volume 2 pgs. 245–252.

    Google Scholar 

  133. Reme, P. A. – Some aspects of wood characteristics and the pul** process in mechanical pulp fibres. Doctoral Thesis. Norwegian University of Science and Technology, Trondheim, 2000 121 pgs (2000) https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/248066

  134. Dickson, A. R.; Corson, S. R. and Dooley, N. J. – Fibre collapse and decollapste determined by cross-sectional geometry. Journal of Pulp and Paper Science, 32 (4): 1–5 (2006).

    Google Scholar 

  135. Wang, X.; Maloney, T. C. and Paulapuro, H. – Internal fibrillation in never-dried and once-dried chemical pulps. Appita Journal, 56 (6): 455–459 (2003).

    Google Scholar 

  136. Beck, M. V. – The importance of wet end equipment and its influence on retention. In: Retention of Fines and Fillers During Papermaking. Gess, J. M. Ed. Tappi Press, Atlanta, 1998, Chapter 7 pgs. 129–158.

    Google Scholar 

  137. Baker, C. F. – Good practice for refining the types of fiber found in modern paper furnishes. Tappi Journal, 78 (2): 147–157 (1995).

    Google Scholar 

  138. Busker, L. H. and Cronin, D. C. – The relative importance of wet press variables in water removal. Pulp and Paper Canada, 85 (6): 138–147 (1984).

    Google Scholar 

  139. Kimmo, H.; Markku, P. and Håkan, S. – New trends and technology in refining. IPPTA Journal, 24 (1): 109–113 (2012).

    Google Scholar 

  140. Baker, C. F. – Refining review – changes in refining practice with new sources of fibre. World Pulp and Paper Technology: 95–97, 99 (1992).

    Google Scholar 

  141. Foelkel, C – Papermaking properties of Eucalyptus trees, woods, and pulp fibers. Eucalyptus Online Book & Newsletter.- Chapter 14 (Jul) 2009 110 pgs www.eucalyptus.com.br/eucaliptos/ENG14.pdf

  142. Demuner, B. J., Ratnieks, E. and Robinson, D. – Ultra low intensity refining of eucalyptus pulps. In: Refining and Mechanical Pul** Conference. PIRA, Barcelona, 2005 Paper 7.

    Google Scholar 

  143. Yuan, L.; Wan, J.; Ma, Y.; Wang, Y.; Huang, M. and Chen, Y. – The content of different hydrogen bond models and crystal structure of eucalypty fibers during beating. BioResources 8 (1), 717–734 (2013).

    Google Scholar 

  144. Foelkel, C. – Vessel elements and eucalyptus pulps. 54 pgs (2007) http://www.eucalyptus.com.br/capitulos/ENG04_vessels.pdf

  145. Rakkolainen, M.; Kontturi, E.; Isogai, E.; Enomae, T.; Blomstedt, M.; Vuorinen, T. – Carboxymethyl cellulose treatment as a method to inhibit vessel picking tendency in printing of eucalyptus pulp sheets. Industrial and. Engineering Chemistry Research, 48 (4): 1887–1892 (2009).

    Google Scholar 

  146. Pydimalla, M. and Reddy, K. – Effect of pul**, bleaching and refining process on fibers for paper making – A review. International Journal of Engineering Research & Technology, 9 (12): 310–316 (2020).

    Google Scholar 

  147. Stone, J. E. and Scallan, A. M. – A structural model for the cell wall of water swollen sood pulp fibres based on their accessibility to macromolecules. Cellulose Chemistry Technology (2): 343–358 (1968).

    Google Scholar 

  148. Bäckström, M – The effect of environment on refining efficiency of kraft pulps. Doctoral Thesis in Fibre and Polymer Science. KTH Royal Institute of Technology, Stockholm, 2020 53 pgs www.diva-portal.org/smash/getdiva2:1456955/FULLTEXT01

  149. Fahlén, J. – The cell wall ultrastructure of wood fibres – effects of the chemical pulp fibre line. KTH Royal Institute of Technology, Stockholm, 2005 70 pgs. https://www.diva-portal.org/smash/get/diva2:7109/FULLTEXT01.pdf

  150. Taher, M. R. B. – Tailored low consistency refining for targeted fiber properties. Master’s Thesis, Abo Akademi, Gadolinia, 2020 50 pgs. www.doria.fi/bitstream/handle/10024/177080/taher_md.pdf?sequence=2&isAllowed=y

  151. Scallan, A. M. and Tigerström, A. C. – Swelling and elasticity of the cell walls of pulp fibres. Jornal of Pulp and Paper Science, 18 (5): 188–193 (1992).

    Google Scholar 

  152. Milichovsky, M. – A new concept of chemistry refining process. Tappi Journal, 62 (10): 221–231 (1990).

    Google Scholar 

  153. Homas, L. H.; Kennedye, C. J.; Mayb, R. P.; Altanerf, C. M.; Apperleyg, D. C.; Wessh, T.J. and Jarvisi, M. C. – Structure of cellulose microfibrils in primary cell walls from collenchyma. Plant Physiology, 161 (1): 465–476 (2013).

    Google Scholar 

  154. Genco, I.; Boufi, S.; Pèlach, M. A.; Alcalà, M.; Vilaseca, F. and Mutjéa, P. – Nanofibrillated cellulose as paper additive in eucalyptus pulps. BioResources, 7 (4): 5167–5180 (2012).

    Google Scholar 

  155. Sjösted A. – Preparation and characterization of nanoporous cellulose fibres and their use in new material concepts. Doctoral Thesis. KTH Royal Institute of Technology. Stockholm, 2014 65 pgs. https://www.diva-portal.org/smash/get/diva2:761478/FULLTEXT01.pdf

  156. Smook, G. A. – Preparation of papermaking stock In: Handbook of Pulp and Paper Thechnologists – Chapter 13. Angus Wilde, 2002. pgs 190–204

    Google Scholar 

  157. Sjöström, E. – Production of microfibrillated cellulose by LC-refining. Master’s Thesis, Abo Akademi, 2018 77 pgs https://www.doria.fi/handle/10024/165125

  158. Winandy, J. E. and Rowell, R. M. – Chemistry of wood strength. In: Handbook of wood chemistry and wood. Chapter 11. CRC Press, Boca Raton, 2005 Ed. Rowell, R. M. – pgs. 303–347.

    Google Scholar 

  159. Gharehkhani, S.; Sadeghinezhada, E.; Kazi, S. N.; Yarmanda, H.; Badarudina, A.; Safaei, M. R. and Zubir, M. N. M. – Effect of pulp consistency during refining of pulp refining on fiber properties—A review. Carbohydrate Polymers Journal, 115: 785–803 (2015).

    Google Scholar 

  160. Salmén, L. – Micromechanical understanding of the cell-wall structure. Comptes Rendus Biologies, 327 (9–10):873–880 (2004 https://www.sciencedirect.com/science/article/pii/S1631069104001726

  161. Brandberg, A. – Insights in paper and paperboard performance by fiber network micromechanics. KTH Royal Institute of Technology. Stockolm, 2019 20 pgs www.diva-portal.org/smash/get/diva2:1355441/FULLTEXT01

  162. Mascarenhas, A. F. and Muralidharan, E. M. – Clonal forestry with tropical hardwoods. In: Clonal Forestry II – Conservation and Application. Ed. Ahuja, M. R. and Libby, W. J. Springer-Verlag, Berlin, 1993 Chapter 10: 167–187.

    Google Scholar 

  163. Berthold, J. and Salmén, L. – Effects of mechanical and chemical treatments on the pore-size distribution in wood pulps examined by inverse size-exclusion chromatography. Journal of Pulp and Paper Science, 23 (6): 245–253 (1997).

    Google Scholar 

  164. Higgins, H. G.; Young, J. de; Balodis, V.; Phillips, F. H. and Colley, J. – The density and structure of hardwoods in relation to paper surface characteristics and other properties. In: Process Engineering Handbook. Ed. Process Engineering Committee of the Engineering Division. Tappi Press, Atlanta, 1992, 2nd Edition Appendix: 77–81.

    Google Scholar 

  165. Luukko, K.; Laine, J. and Pere, J. – Chemical characterization of different mechanical pulp fines. Appita Jorunal, 51 (2): 126–131 (1999).

    Google Scholar 

  166. Waterhouse, J. F. and Riipa, T. – Hardwoods from softwoods? In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 12 24 pgs.

    Google Scholar 

  167. Fürst, T. – A new instrument capable of measuring cross machine profiles of internal bond strength. In: Engineering/Process and Product Quality Conference & Trade Fair. TAPPI, Anaheim, 1999 Volume 1 pgs. 1–8.

    Google Scholar 

  168. Oliveira, M. H. de – Wet web strength development of paper. Master’s Thesis, McGill University, Montreal, 2007 118 pgs.

    Google Scholar 

  169. Jardim, C. – Variações na densidade básica da madeira versus impacto no processo produtivo. In: 1° Encontro de Operadores de Pátio de Madeira e 5° Encontro de Operadores de Linhas de Fibras. ABTCP. 2019.

    Google Scholar 

  170. Dasgupta, S. – Mechanism of paper tensile-strength development due to pulps beating. Tappi Journal, 77 (6): 158–166 (1994).

    Google Scholar 

  171. Demuner, B. J. Viana Doria, E. L.; Claudio-da-Silva Jr., E. and Manfredi, V. – As propriedades do papel e as características das fibras de eucalipto. In: XXIV Congresso Anual de Celulose e Papel. ABTCP, São Paulo, 1991 pgs. 621–641.

    Google Scholar 

  172. Wang, X. – Improving the papermaking properties of kraft pulp by controlling hornification and internal fibrillation. Doctoral Thesis, Helsinki University of Technology, Espoo, 2006 88 pos http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.575.9047&rep=rep1&type=pdf

  173. Genco, J. M. – Fundamental process in stock preparation and refining. In: Pul** Conference. TAPPI, Orlando, /1999 pgs. 57–95.

    Google Scholar 

  174. Antes, R. and Joutsimo, O. P. – Effect of modified cooking on fiber wall structure of E. globulus and E. nitens. BioResources, 10 (2): 2195–2212 (2015).

    Google Scholar 

  175. Mohlin, U.-B e Miller, J. – Industrial refining – effects of refining conditions on fibre properties. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 4.

    Google Scholar 

  176. Dowens, G. M. – Wood properties of interest in plantation productivity. In: Sampling Plantation Eucalyptus for Wood and Fibres Properties. Chapter 1. Ed. Dewens, G. M. et al CSIRO Publishing, Collingwood, 1997 pgs. 1–8.

    Google Scholar 

  177. Laivans, G. V. and Scallan, A. M. – Removal of water from pulps by pressing, Tappi Journal, 77(3), 125 (1994).

    Google Scholar 

  178. Mohlin. U. B. – Cellulose fiber bonding. Part 3: The effect of beating and drying on inter fiber bonding. Svensk Papperstiding, 78 (9): 338–341 (1975).

    Google Scholar 

  179. Groot, B. de; Van der Kolk, J. C.; Van Dam, J. E. G. and Riet, K. V. – Papermaking characteristics of alkaline hemp-woodly-core pulps. Tappi Journal, 82 (7): 107–111 (1999).

    Google Scholar 

  180. Du, X.; Gellerstedt, G. and Li, J. – Universal fractionation of lignin–carbohydrate complexes (LCCS) from lignocellulosic biomass: An example using spruce wood. Plant Journal, 74 (2): 328–338 (2013).

    Google Scholar 

  181. Meltzer, F. P. and Sepke, P.-W. – New ways to forecast the technological results of refining. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 2 26 pgs.

    Google Scholar 

  182. Eklund, D. and Lindström, T. – Paper chemistry – An introduction. DT Paper Science Publications, Grankulla, Finland, 1991 305 pgs.

    Google Scholar 

  183. Martinez, P. C. and, S. W. – Modelos matemáticos de uma fibra celulósica em processo de refino em baixa consistência. In: V CIADICYP – Congreso Iberoamericano de Investigación en Celulosa y Papel, Guadalajara, 2006 12 pgs https://www.eucalyptus.com.br/artigos/2006_Modelagem+Fibras+Refinador.pdf

  184. Hubbe, M. A.; Venditti, R. V. and Rojas, O. J. – What happens to cellulosic fibers during papermaking and recycling? A Review. BioResources, 2 (4): 739–788 (2007).

    Google Scholar 

  185. Martinez, P. C. and Park, S. W – Review of physical principles in low consistency refining. O Papel, 73 (8): 65–72 (2012)

    Google Scholar 

  186. Uesaka, T. and Moss, C. – Effects of fibre morphology on hygroexpansivity of paper: a micromechanics approach. In: 11st Fundamental Research Symposium. PIRA, Leatherhead, 1997 pgs. 663.

    Google Scholar 

  187. MacLeod, M. and Pelletier, L. J. – Basket cases: kraft pulps inside digesters. Tappi Journal, 70 (11): 47 (1987)

    Google Scholar 

  188. Laine, J.; Lindström, T.; Bremberg, C. and Nordmark, G. – Studies on topochemical modification of cellulosic fibres. Part 5: Comparison of the effects of surface and bulk chemical modification and beating of pulp on paper properties. Nordic Pulp and Paper Research Journal, 18 (3): 325–332 (2003).

    Google Scholar 

  189. Liu, H.; Jixian Dong. J.; Guo, X.; Jiang, X.; Luo, C.; **aohui Tian, X.; Yang, R.; Zhang, L.; Bo Wang, B.; Yan, Y. – Refining characteristics of hardwood pulp using straight and curved bar plates. Journal of Korea TAPPI, 51 (5): 45–60 (2019).

    Google Scholar 

  190. Brecht, W. and Klemm, K. H. – The mixture of structures in a mechanical pulp as a key to the knowledge of its technological properties. Pulp and Paper Magazine Canada, 54 (1): 72–80 (1953).

    Google Scholar 

  191. Ruffo, R. and Malton, S. – Energy savings in stock preparation for recycled paper. Appita Journal, 61 (4): 277–283 (2008).

    Google Scholar 

  192. Mandlez, D.; Zangl-Jagiello, L.; Eckhart, R. and Bauer, W. – Softwood kraft pulp fines: application and impact on specific refining energy and strength properties. Cellulose, 27:10359–10367 (2020).

    Google Scholar 

  193. Paavilainen, L. and Luner, P. – Wet flexibility as a predictor of sheet properties. Espra Research Reports, 84 (IX): 2 (1986).

    Google Scholar 

  194. Gao, Y.; Li, K. and Wang, Z. – The influence of pulp furnish components on the property of supercalendered paper. Pulp and Paper Canada, 108 (1): 44–49 (2007).

    Google Scholar 

  195. Görres, J.; Amiri, R.; Wood, J. R. and Karnis, A. – The apparent density of sheets made from pulp blends. Tappi Journal, 79 (1): 179–187 (1996).

    Google Scholar 

  196. Maloney, T. C. – On the pore structure and dewatering properties of the pulp fiber cell wall. Doctoral Thesis, Helsinki University of Technology, Esppo, 2000. 52 pgs https://www.researchgate.net/publication/34731327_On_the_pore_structure_and_dewatering_properties_of_the_pulp_fiber_cell_wall

  197. Yu, Y.; Kettunen, H.; Hiltunen, E. and Niskanen, K. – Comparison of abaca and spruce as reinforcement. In: International Paper Phuysics Conference. TAPPI, Sao Diego, 1999 p. 161–169.

    Google Scholar 

  198. Bäckström, M.; Melander, E. and Brännall, E. – Study of the influence of charges on refinability of bleached softwood kraft pulp. Nordic Pulp and Paper Research Journal, 28 (4): 588–595 (2013)

    Google Scholar 

  199. Wallbäcks, L.; Edlund, U.; Lindgren, T. and Agnemo, R. – Multivariate characterization of pulp. Part 3: evaluation of physical and spectroscopic data on unbeaten and beaten kraft pulp samples. Nordic Pulp and Paper Research Journal, 10 (2): 88–93 (1995).

    Google Scholar 

  200. Laivins, G. V. and Scallan, A. M. – Removal of water from pulps by pressing. Part 1: inter- and intra-wall water. Tappi Journal, 77 (3): 125–131 (1994).

    Google Scholar 

  201. Hietanen, S. and Ebeling, K. – A new hypothesis for the mechanics of refining. Paperi ja Puu, 72 (2): 172–179 (1990).

    Google Scholar 

  202. Salvador, E.; Colodette, J. L.; Gomide, J. L. and Oliveira, R. C. de – Efeito da deslignificação com oxigênio nas propriedades físico-mecânicas de polpas kraft. O Papel, 61 (2): 75–96 (2001).

    Google Scholar 

  203. Lumiainen, J. – Specific surface load theory. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995. Paper 5 15 pgs.

    Google Scholar 

  204. Lee, M-S.; Kim, C-H.; Lee J-Y.; Park, S-H. and Min, B-G. – Performance evaluation of bar plates without a draft angle to improve refining efficiency. Journal of Korea TAPPI, 51 (5): 84–90 (2019).

    Google Scholar 

  205. Hortal, J. G. – Composicion quimica y estructura de la fibra. In: Constituyentes fibrosos de pastas y papeles. Ed. Escuela Técnica Superior de Ingenieros Industriales de Terrassa, 1988 Capitulo 2 pgs. 11–36.

    Google Scholar 

  206. Rantanen, J.; Hitunen, E.; Nieminen, K.;Kerekers, R. and Paulapuro, H. – Construction or a wintl3 bar refinin34. Tappi Journal, 10 (7): 45–51. (2011).

    Google Scholar 

  207. Mayr, M.; Eckard, R.; Thaller, A. and Bauer, W. – Characterization of fines quality and that independent effect on sheet properties. In: 15th Fundamental Research Simposium, Oxford, 2017 pgs 299–322.

    Google Scholar 

  208. Liu, H.; Dong, J.; **g, H.; Guo, X.; Duan, C.; Qi, K.; Yang, R.; Guo, H.; Wang, B, e Qiao, L. – Refining characteristics of isometric straight bar plates with different bar angles. BioResources, 15 (4): 7844–7860 (2020).

    Google Scholar 

  209. Motamedian, H. R.; Halilovic, A. E. and Kulachenko, A. – Mechanisms of strength and stiffness improvement of paper after PFI refining with a focus on the effect of fines. Cellulose 26: 4099–4124 (2019).

    Google Scholar 

  210. Bäckström, M.; Kolar, M.-C. and Htun, M. – Characterization of fines from unbleached kraft pulps and their impact on sheet properties, Holzforschung, 62 (5): 546–552 (2008).

    Google Scholar 

  211. Htun, M. and Ruvo, A. D. – Implication of fines fraction for properties of bleached Kraft sheet. Svensk Papperstidning, 81 (16): 507–510 (1978)

    Google Scholar 

  212. Ratnieks, E. and Martins, M. A. L. – Eucalyptus refining and white water quality. In: XXXV Congresso Anual. ABTCP, São Paulo, 1992 11 pgs.

    Google Scholar 

  213. Lindström, T. – Chemical factors affecting the behavior of fibres during papermaking. Nordic Pulp and Paper Research Journal, 7 (4): 181–192 (1992).

    Google Scholar 

  214. Hammar, L-Å; Bäckström, M. and Htun, M. – Efeitos da concentração de eletrólito e do pH na característica de refino de celuloses kraft não branqueadas. O Papel, 63 (8): 79–86 (2003).

    Google Scholar 

  215. Lobben, H. T. – The tensile stiffness of paper. Part 2: Activation studied by freeze drying. Nordic Skogindustri, 30 (3): 43–48 (1976)

    Google Scholar 

  216. Lindström, T. and Carlsson, G. – The effect of carboxyl groups and their ionic form during drying aon the hornification of cellulose fibers. Svensk Papperstiding,85 (15): 146–151 (1982).

    Google Scholar 

  217. Wang, X., Paulapuro, H. and Maloney, T. C. – Chemical pulp refining for optimum combination of dewatering and tensile strength. Nordic Pulp and Paper Research Journal, 20 (4): 442–447 (2005)

    Google Scholar 

  218. Joris, G. – Optimized fillings for LC refiners. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 22 89 pgs.

    Google Scholar 

  219. Lindström, T. and Kolman, M. – The effect of pH and electrolyte concentration during beating and sheet forming on paper strength. Svensk Paperstiding, 85 (15): 140 (1982).

    Google Scholar 

  220. Scallan, A. M. and Grignon, J. – The efeect of cations on pulp and paper properties. Svensk Papperstiding., 82 (2): 40–47 (1979)

    Google Scholar 

  221. Koljonen, K.; Österberg, M.; Kleen, M.; Fuhrmann, A. and Stenius, P. – Precipitation of lignin and extractives on kraft pulp: Effect on surface chemistry, surface morphology and paper strength. Cellulose, 11: 209–224 (2004).

    Google Scholar 

  222. Laivins, G. and Scallan, T. – Acidic versus alkaline beating of pulp. Journal of Pulp and Paper Science, 26 (6): 228–233 (2000).

    Google Scholar 

  223. Torgnysdotter, A. and Wågberg, L. – Study of the joint strength between regenerated cellulose and its influence on the sheet strength. Nordic Pulp and Paper Research Journal, 18 (4): 455–459 (2003).

    Google Scholar 

  224. Zhang, Y.; Sjögren, B.; Engstrand, P. and Htun, M. – Determination of charged groups in mechanical pulp fibres and their influence on pulp properties. Journal of Wood Chemistry Technology, 14 (1): 83 (1994).

    Google Scholar 

  225. Hirn, U. and Schennach, R – Fiber-fiber bond formation and failure: mechanisms and analytical techniques. In: 16th Fundamental Research Symposium, Oxford, 2017 pgs 839–863. https://bioresources.cnr.ncsu.edu/wp-content/uploads/2019/03/2017.2.839.pdf

  226. Ruusumo, P.; Sacon, V. and Fardim, P. – Grupos aniônicos em fibras de polpa de eucalipto: perfil de concentração numa linha de branqueamento. O Papel, 69 (10): 56–69 (2008).

    Google Scholar 

  227. Mohlin, U-B. – On the complexity of LC refining – changing consistency and flow rate in the Beloit DD refiner. In: Scientific and Technical Advances in Refining & Mechanical Pul** – Course Notes. PIRA: Stockholm, 2003 Paper 14.

    Google Scholar 

  228. Keckes, J.; Burgert, I.; Fruhmann, K.; Muller, M.; Kolling, K.; Hamilton, M.; Burghammer, M.; Roth, S.V.; Stanzl-Tschegg, S. and Fratzl, P. – Cell-wall recovery after irreversible deformation in wood. Natural Materials, 2: 810–814 (2003).

    Google Scholar 

  229. Scallan, A. M. and Carles, J. E. – Correlation of water retention value with fiber saturation point. Svensk Papperstiding, 75 (17): 699–703 (1972).

    Google Scholar 

  230. Stone, J. E.; Scallan, A. M. and Abrahamson, B. – Influence of beating on cell wall swelling and internal fibrillation. Svensk Papperstiding, 71 (19): 687–694 (1968).

    Google Scholar 

  231. Maloney, T. C.; Laine, J. E. and Paulapuro, H. – Comments on the measurement of cell wall water. Tappi Journal, 82 (9): 125–127 (1999).

    Google Scholar 

  232. Lumiainen, J. – Comparison of the mode of operation between conical and disc refiners. In: IV International Refining Conference. PIRA, Fiuggi, 1997 Paper 14 pgs. 227–236.

    Google Scholar 

  233. Lee, J-Y.; Kim, C-H.; Kwon, S.; Park, H-H.; Yim, H-T.; Gu, H-G. and Min, B-G. – Study of mixed refining behaviors of softwood kraft pulps and hardwood kraft pulps using different bar fillings. Journal of Korea TAPPI, 50(5): 31–38 (2018).

    Google Scholar 

  234. McIntoch, D. C. – The effect of refining on the structure of the fiber wall. Tappi, 50 (10): 482–488 (1967).

    Google Scholar 

  235. Emerton, H. W. – Fundamentals of the beating process. Marshall Press, London, 1957 137 pgs.

    Google Scholar 

  236. Mayr, M.; Eckhart, R.; Winter, H. and Bauer, W. – A novel approach to determining the contribution of the fiber and fines fraction to the water retention value (WRV) of chemical and mechanical pulps. Cellulose 24: 3029–3036 (2017

    Google Scholar 

  237. Koskenhely K.; Ämmälä, A.; Jokinen, H. and Paulapuro, H. – Effect of refining intensity on pressure screen fractionated softwood kraft. Nordic Pulp and Paper Research Journal, 20 (2): 169–175 (2005).

    Google Scholar 

  238. Bäckström, M.; Lindblom, A. T. and Wågberg, L. – Studies of the influence of deflocculants and flocculants on the refining efficiency on a pilot scale. Nordic Pulp and Paper Research Journal, 24 (3): 319–326 (2006)

    Google Scholar 

  239. Campos, E. da S. – A influência do perfil transversal de umidade da folha na estabilidade dimensional do papel. In: XXVIII Congresso Anual de Celulose e Papel. ABTCP, São Paulo, 1995 pgs. 667–675.

    Google Scholar 

  240. Jayme, G.; Ghoneim, A-F. and Krüger, H. – Verbesserte messung des wasser-zellstoffe. Das Papier, 90 (12) (1958) [721].

    Google Scholar 

  241. Wang, X.; Maloney, T. C. and Paulapuro, H. – Improving the properties of never-dried chemical pulp by pressing before refining. Nordic Pulp and Paper Research Journal, 21 (1): 135–139 (2006).

    Google Scholar 

  242. Mohlin, U-B.; Mohlin, U. and Puiseau, M. W. – Some aspects of using zero-span tensile index as a measure of fiber strength. In: International Paper Physics Conference. TAPPI, Victoria, 2003 pgs. 107–113

    Google Scholar 

  243. Duker, E.; Ankerfors, M.; Lindström, T. and Nordmark, G. G. – The use of CMC as a dry strength agent – the interplay between CMC attachment and drying. Nordic Pulp and Paper Research Journal, 23 (1): 65–71 (2008).

    Google Scholar 

  244. Chen, Y.; Wan, J.; Dong, X. and Ma, Y. – Fiber properties of eucalyptus kraft pulp with different carboxyl group contents. Cellulose, 20:2839–2846 (2013).

    Google Scholar 

  245. Waterhouse, J. F. – The ultimate strength of paper. In: Design Criteria for Paper Performance. Ed. Kolseth, P; Fellers, C. and Salmen, L. STFI, Meddelande A 969, 1987.

    Google Scholar 

  246. Ingmanson, W. and Thode, E. – Factors contributing to the strength of paper – relative bonded area. Tappi, 42 (1): 83–93 (1959).

    Google Scholar 

  247. Retulainen, E. – The role of fibre bonding in paper properties. Doctoral Thesis, Helsinki University of Technology, Espoo, 1997 78 pgs https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB98102098.xhtml

  248. Vainio, A. and Paulapuro, H. – Observations on inter fibre bonding and fibre segment activation based on the strength properties of laboratory sheets. Nordic Pulp and Paper Research Journal, 20 (3): 340–344 (2005).

    Google Scholar 

  249. Weisse, U. and Paulapuro, H. – Effect of drying and rewetting cycles on fibre swelling. Journal of Pulp and Paper Science, 25 (5): 163–166 (1999).

    Google Scholar 

  250. Rusu M, Mörseburg K, Gregersen Ø, Yamakawa A, Liukkonen S. – Relation between fibre flexibility and cross sectional properties. Bioresources 6(1):641–655 (2011).

    Google Scholar 

  251. Santos, A.; Amaral, M. E.; Vaz, A.; Anjos, O. and Simões, R. – Effect of Eucalyptus globulus wood density on papermaking potential. Tappi Journal, 7 (5): 25–32 (2008).

    Google Scholar 

  252. Bentley, R. G.; Hamilton, R. K. and Jack, J. S. – An optical method for monitoring pulp refining. Journal of Pulp and Paper Science, 23 (10): 504–509 (1997).

    Google Scholar 

  253. Thode, E. F. and Ingmanson, W. L. – Factor contributing to the strength of a sheet paper. Tappi, 42 (1): 74–83 (1959).

    Google Scholar 

  254. Claudio-da-Silva Jr., E.; Marton, R. and Granzows, S. – Effect of beating on wet-web properties. Tappi Journal, 65 (11): 99–103 (1982).

    Google Scholar 

  255. Kim, B. Y. – Influences of beating on photo degradation. J.Tappik, 25 (4): 27–33 (1993).

    Google Scholar 

  256. Kropholler, H. W.; Sampson, W. W. and Rosli, W. – Strength properties of paper not sensitive to tackle used for beating or refining. In: International Paper Physics Conference. CPPA/TAPPI, Niagara-on-the-lake, 1995 pgs. 59–63.

    Google Scholar 

  257. Shekhar, C. D. – Fine edged parallel and curved bar plates in refining system for pulp and paper industries. IPPTA Journal, 24 (1): 115–119 (2012).

    Google Scholar 

  258. Shekhar, C. D. – Fine bar technology in refining system for pulp and paper industries. IPPTA Journal, 22 (3): 109–112 (2010).

    Google Scholar 

  259. Arjas, A. – Effect of the evenness of the pulp bleaching stage on fibre bonding. Paperi Ja Puu, 52 (12): 825–829 (1970).

    Google Scholar 

  260. Clark, J.d’A. – Fibrillation, free water and fiber bonding. Tappi, 52 (2): 335 (1969).

    Google Scholar 

  261. Seth, R. S. and Chan, B. K. – Measuring fiber strength of papermaking pulps. Tappi Journal, 82 (11): 115–120 (1999).

    Google Scholar 

  262. Duker, E. and Lindström, T. – On the mechanisms behind the ability of CMC to enhance paper strength. Nordic Pulp and Paper Research Journal, 23 (1): 57–64 (2008).

    Google Scholar 

  263. Stoere, P.; Nazhad, M. and Kerekes, R. J. – An experimental study of the effect of refining on paper formation. Tappi Journal, 84 (7): 52–58 (2001)

    Google Scholar 

  264. Steenberg, B. – A model of refining as a special case of milling. In: International Symposium on Fundamental Concepts of Refining. IPC, Appleton, 1980 pgs 107.

    Google Scholar 

  265. Manfredi, V. and Claudio-da-Silva Jr, E. – Refining operating variables vs raw material. In: International Conference – Advances in Refining Technologies. PIRA, Birmingham, 1986 41 pgs.

    Google Scholar 

  266. Joy, E.; Robinson, D. and Mathew, J. – Deformation of fiber flocs in refining. In: Papermakers Conference. TAPPI, 2001 5 pgs.

    Google Scholar 

  267. Allison, R. W. – Effect of pul** and bleaching conditions on the strength of radiata pine kraft pulp. Appita, 46 (6): 424–429, 444 (November 1993).

    Google Scholar 

  268. Sandeep, T.; Nirmal, S.; Om P. M.; Pratima, B.; Pramod K. B. – Enzymatic Refining of Chemical Pulp. IPPTA Journal, 20 (3): 129–132 2008 https://www.researchgate.net/publication/305527618_Enzymatic_Refining_of_Chemical_Pulp

  269. Almeida, M. D. de; Sevrini, G. I.; Leodoro, L. M., Faez, M. S., Soto, M. R., Kaneco, S. Y. – Tratamento mecânico de fibra curta de eucalipto com utilização de discos de refino com maior comprimento de corte. O Papel, 66 (6): 80–87 (2006).

    Google Scholar 

  270. El-Sharkawy, K.; Haavisto, S.; Koskenhely, K. and Paulapuro, H. – Effect of fiber flocculation and filling design on refiner loadability and refining characteristics. BioResources, 3 (2):403–424 (2008).

    Google Scholar 

  271. Batchelor, W., Lundin, T. and Fardim, P. – A method to estimate fiber trap** in low-consistency refining. Tappi Journal, 5 (8): 31–36 (2006).

    Google Scholar 

  272. Demuner, B. J.; Viana Doria, E. L.; Claudio-da-Silva Jr., E. and Manfredi, V. – Influência das características dos flocos sobre o refino de polpas químicas. O Papel, 54 (2): 29–39 (1993).

    Google Scholar 

  273. Joris, G. – Optimization of industrial refining unit through Fibrologic 4.0. In: IV International Refining Conference. PIRA, Fiuggi, 1997 Paper 17 pgs. 267–303.

    Google Scholar 

  274. Lumiainen, J. – Refining of fine paper fibers – separate or mixed refining?. In: Papermakers Conference. TAPPI, Philadelphia, 1996 pgs. 175–186.

    Google Scholar 

  275. Li, L.; Collins, A. and Pelton, R. – A new analysis of filler effects on paper strength. Journal of Pulp and Paper Science, 28 (8):267–273 (2002).

    Google Scholar 

  276. Stevens, W. V. – Principles of stock preparation and refining – refiners and refiner systems. In: Pul** Conference. TAPPI, Orlando, 1999, pgs. 97–102.

    Google Scholar 

  277. Kerekes, R. – Perspectives on fibre flocculation in papermaking. In: International Paper Physics Conference. TAPPI, Niagara-on-the-Lake, 1995. pgs. 23–31.

    Google Scholar 

  278. Lundin, T.; Lönnberg, B.; Soini, P. and Harju, K – Laboratory LC-refining of SBK pulps: effects of pulp consistency and dispersion. In: Scientific and Technical Advances in Refining & Mechanical Pul** – Course Notes. PIRA, Stockholm, 2003 Paper 5.

    Google Scholar 

  279. Bajpai, P. – Technology developments in refining. Pira International Ltd. Surrey, UK. 140 pgs (2005).

    Google Scholar 

  280. Strömberg, B. – Hardwood yield increases with Lo-solids® cooking and Lo-level® feed system at Papelera Guipuzcoana de Zicuñaga, Spain. In: Pul** Conference, TAPPI, Quebec, 1998 7 pgs https://www.eucalyptus.com.br/artigos/2002_LoSolids+Pul**.pdf

  281. Kerekes, R. J. and Schell, C. J. – Characterization of fibre flocculation regimes by a crowding factor. Journal of Pulp and Paper Science, 18 (1): J32–38 (1992)

    Google Scholar 

  282. Gabl, H. and Gorton-Heulgerth, A. – A new low consistency refiner yields improved fibre properties while reducing idle energy by up 40%. In: Scientific and Technical Advances in Refining & Mechanical Pul** – Course Notes. PIRA: Stockholm, 2003 Paper 8.

    Google Scholar 

  283. Sharkawya, K. E.; Haavistob, S.; Koskenhely, K. and Paulapuroa, H. – Effect of fiber flocculation and filling design on refiner loadability and refining characteristics. BioResources, 3 (2): 403-424 (2008).

    Google Scholar 

  284. Laivins, G. V. and Scallan, A. M. – The influence of drying and beating on the swelling of fines. Journal of Pulp and Paper Science, 22 (5): 178–184.1996).

    Google Scholar 

  285. Dillen, S. – Heterogeneity – An Important Parameter in Low Consistency Refining. In: International Symposium of Fundamental Concepts of Refining. IPC, Appleton: 16-18/09/1980 pgs. 331.

    Google Scholar 

  286. Wathen, R, – Studies on fiber strength and its effect on paper properties. Doctoral Thesis. Helsinki University of Technology, Helsinki, 2006 98 pgs https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.554.2638&rep=rep1&type=pdf

  287. Eriksen, Ø.; Holmqvist, C. and Mohlin, U-B. – Theoretical outline of the cause for observed cavitation in a low-consistency refiner. Nordic Pulp and Paper Research Journal, 23 (3): 315–320 (2008).

    Google Scholar 

  288. Kibblewhite, R. P. and Brookes, D. – Factors which influence the wet web strength of commercial pulps. Appita Jornal, 28 (4): 227–231 (1975).

    Google Scholar 

  289. Joutsimo, O.; Wathen, R. and Tamminen, T. – Effects of fiber deformations on pulp sheet properties and fiber strength. Paperi jaa Puu, 87 (6):392 (2005).

    Google Scholar 

  290. Mohlin, U.-B. and Alfredsonn, C. – Fibre deformation and its implications in pulp characterization. Nordic Pulp and Paper Research Journal, 4 (5): 172–179 (1990)

    Google Scholar 

  291. Nikolaeva, M. – Measurement and improvement of wet paper web strength. Master’s Thesis, Lappeenranta University of Technology, Lappeenranta, 2010 78 pgs. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.956.5834&rep=rep1&type=pdf

  292. Bennington, C. P. J. – Simultaneous chemical and mechanical treatment of pulp fibre and the resulting changes in pulp properties. Nordic Pulp and Paper Research Journal, 21 (1): 44–48 (2006).

    Google Scholar 

  293. Lindau, J.; Theliander, H. and Sjöström, K. – The compression of pulp before and during brown stock washing – Its influence on fibre properties. Nordic Pulp and Paper Research Journal, 23 (2): 195–201 (2008).

    Google Scholar 

  294. Mohlin, U. B.; Dahlbom, J. and Hornatowska, J. – Fiber deformation and sheet strength. Tappi Journal, 79 (6): 105–111 (1996).

    Google Scholar 

  295. Gominho, J. and Pereira, H. – Effect of refining in the fibre structure and properties in unbleached eucalypt pulps. In: International Conference on Cellulose and Cellulose Derivatives: Physico-Chemical Aspects and Industrial Applications, 1998 pgs. 529–534.

    Google Scholar 

  296. Kimura, M.; Kimura, S.; Qi, Z. D.; Kuga, S. and Isogai. A. – Porous structure of never dried pulp fi bers analyzed by nitrogen adsorption method. In: 15th Fundamental Research Symposium, Cambridge, 2013 pgs 821–836

    Google Scholar 

  297. Bovin, A.; Hartler, N. and Teder, A. – Changes in pulp quality due to repeated papermaking. Paper Technology (5): 169–172 (1973).

    Google Scholar 

  298. Kibblewhite, R. P. and Bailey, D. – Measurement of fibre cross-section dimensions using image processing. Appita Journal, 41 (4): 297–303 (1988).

    Google Scholar 

  299. Weise, U. – Hornification – mechanisms and terminology. Paperi Puu, 80 (2):110–115 (1998)

    Google Scholar 

  300. Carlsson, G. and Lindström, T. – Hornification of cellulosic fibers during wet pressing. Svensk Papperstiding, 87 (15): R119 (1984).

    Google Scholar 

  301. Robertson, A. A. – Some observations on the effects of drying papermaking fibres. Pulp and Paper Magazine Canada, 65 (3): T161–168 (1964).

    Google Scholar 

  302. Howard, R. C. and Bichard, W. – The basic effects of recycling on pulp properties. Journal of Pulp and Paper Science, 18 (4): 151–159 (1992).

    Google Scholar 

  303. Arroyo, L. M. – Optimización energética de una fábrica de papel de nueva planta. El Papel (46): 35–39 (1995).

    Google Scholar 

  304. Lumiainen, J. – Refining secondary fibres. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 16 11 pgs.

    Google Scholar 

  305. Cardoso, G. da S.; Lopes, J. L.; dos Santos, M. R. and Lopes, R. J. F. – Tratamento enzimático sobre as fibras recicladas de papelão ondulado. O Papel, 79 (7): 80–86 (2018).

    Google Scholar 

  306. Malinen, R.; Rantanen, T.; Rautonen, R. and Toikkanen, L. – TCF bleaching to high brightness – bleaching sequences and pulp properties. In: International Pulp Bleaching Conference. TAPPI/CPPA/SPCI/EUCEPA, Vancouver, 1994 pgs. 187–194.

    Google Scholar 

  307. Glowacki, J. J. – Refiners: new designs achieved higher efficiency/capacity. Pulp and Paper 70, (1): 113–114 (1996).

    Google Scholar 

  308. Arjas, A.; Aario, M. and Rythi, N. – Influence of the residence time distribution on the beating result of a Mill-size conical refiner. Paperi ja Puu, 52 (10): 639–649 (1970)

    Google Scholar 

  309. Soszynski, R.H. and Kerekes, R. – Elastic interlocking of nylon fibers suspended in liquid. Part 1: nature of cohesion among fibers. Nordic Pulp and Paper Research Journal, 3 (4): 172–179 (1988).

    Google Scholar 

  310. Retulainen, E.; Moss, P. and Nieminen, K. – Effect of calendering and wetting on paper properties. Journal of Pulp and Paper Science, 23 (1): 34–39 (1997).

    Google Scholar 

  311. Torgnysdotter, A.; Kulachenko, A.; Gradin, P. and Wågberg, L. – Fibre/fibre crosses: finite element modelling and comparison with experiment. Journal of Composite Materials, 41 (13): 1603–1618 (2007)

    Google Scholar 

  312. Hirn, U.; Schennach, R.; Ganser, C.; Magnusson, M.; Teichert, C. and Östlund, S. – The area in molecular contact in fiber-fiber bonds.In: 15th Fundamental Research Symposium: Advances in Paper Research, Cambridge. 2013 pgs 201–226.

    Google Scholar 

  313. Hirn, U. and Schennach, R. – Comprehensive analysis of individual pulp fiber bonds quantifies the mechanisms of fiber bonding in paper. Scientific Reports, 5 (10503):1–9 (2015).

    Google Scholar 

  314. Martinez, P.C. and Park, S. W. – Ações das forças em processo de refino em baixa consistência. In: 40th Congresso Anual. ABTCP: São Paulo, 2007 12 pgs.

    Google Scholar 

  315. Anand, S. H.; Manigandan, P.; Kumar, S. and Jeffrey, J. E. C. – Design and manufacturing of disc refiner. International Journal of Emerging Technology in Computer Science and Electronics, 21 (3): 79–82 (2016)

    Google Scholar 

  316. Banks, W. A. – Design considerations and engineering characteristics of disc refiners. Paper Technology, 8 (4): 363–369 (1967).

    Google Scholar 

  317. Stationwala, M. I.; Atack, D. and Karnis, A. – Distribution and motion of pulp fibres on refiner bar surface. Journal of Pulp and Paper Science, 18 (4): 131–137 (1992).

    Google Scholar 

  318. Martinez, M. – The energy expended on pulp fibres during low consistency refiners. Doctoral Thesis, The University of British Columbia, Vancouver, 1995 106 pgs.

    Google Scholar 

  319. Batchelor, W. J. and Ouellet, D. – Estimating forces on fibers in refining. In: IV International Refining Conference. PIRA, Fiuggi, 1997. Paper 2 pgs. 47–60.

    Google Scholar 

  320. Demler, C. L. – Fundamentals of papermill refining for chemical, mechanical and secondary fibers. In: TECH95 Theory & Practice of Papermaking Course. CPPA;. Ottawa, 1995 Section A2 23 pgs.

    Google Scholar 

  321. Hartman, R. R. – Mechanical treatment of pulp fibers for property development. Doctoral Thesis, Institute of Paper Chemistry, Atlanta, 1984 131 pgs https://smartech.gatech.edu/handle/1853/5510

  322. Kerekes, R. J. – Characterizing the refining action – linking the process to the refining result. In: Refining and Mechanical Pul** Conference. PIRA, Barcelona, 2005 Paper 1.

    Google Scholar 

  323. Martinez, M. and Kerekes, R. J. – Forces on fibres in low-consistency refining. Tappi Journal, 77 (12): 119–123 (1994).

    Google Scholar 

  324. Nissan, A. H. – Lectures on fiber science in paper. Edited by W.C. Walker, Pulp and Paper Technology Series. Joint Textbook Committee of the Paper Industry. N°4. p27

    Google Scholar 

  325. Kerekes, R. J. – Energy and forces in refining. Journal of Pulp and Paper Science, 30 (1): 10–15 (2010).

    Google Scholar 

  326. Kerekes, R. J. – Force-based characterization of refining intensity. Nordic Pulp and Paper Research Journal, 26 (1): 14–20 (2011).

    Google Scholar 

  327. Nugroho, D. D. P. – Low consistency refining of mixtures of softwood and hardwood bleached kraft pulp: effects of refining power. Master’s Thesis. Asian Institute of Technology. Pathum Thani, 2012 66 pgs www.turbulence-initiated.sites.olt.ubc.ca/files/2013/02/LCRefining_Mixed-Softwood-Hardwood_Dimas-Thesis_.pdf

  328. Martinez, M.; Batchelor, W. J.; Kerekes, R. J. e Ouellet, D. – Forces on fibres in low-consistency refining: normal force. Journal of Pulp and Paper Science, 23 (1): J11–J18 (1997).

    Google Scholar 

  329. Batchelor, W. J.; Martinez, M.; Kerekes, R. J. and Ouellet, D. – Forces on fibres in low-consistency refining: shear force. Journal of Pulp and Paper Science, 23 (1): J40–J45 (1997).

    Google Scholar 

  330. Kerekes, R.J. and Olson, J.A. – Perspectives on fibre length reduction in refining. In: International Conference Scientific and Technical Advances in Refining & Mechanical Pul**. PIRA, Stockholm, 2003 Paper 2.

    Google Scholar 

  331. Joris, G. – Gestion optimale d’une unite industrielle de raffinage. Revue ATIP, 61 (2): 6–25 (2007).

    Google Scholar 

  332. Kerekes, R. J. – Characterizing refining action in PFI mills, Tappi Journal, 4 (3): 9–13 (2005).

    Google Scholar 

  333. Kang, T, – Role of external fibrillation in pulp and paper properties. Doctoral Thesis, Helsinki University of Technology, Espoo, 2007 43 pgs www.citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.575.6375&rep=rep1&type=pdf

  334. Kang, T. and Paulapuro, H. – Effect of external fibrillation on paper strengt. Pulp and Paper Canada, 107 (7/8): 51–54 (2006).

    Google Scholar 

  335. Kibblewhite, R. P. – Effect of beating on fiber morphology and fiber surface structure. Appita, 26 (3): 196–202 (1972)

    Google Scholar 

  336. Page, D. H. and De Grace, J. H. – Delamination of fiber walls by beating and refining. Tappi Journal, 50 (10): 489–493 (1967).

    Google Scholar 

  337. Vishtal, A. and Retulainen, E. – Boosting the extensibility potential of fibre networks: A review. BioResources, 9 (4): 7951–8001 (2014.

    Google Scholar 

  338. Hubbe, M. A. and Heitmann, J. A. – Review of factors affecting the rekease if water from cellulosic fibers during paper manufacture. BioResources, 2 (3): 500–535 (2007)

    Google Scholar 

  339. Molin, U. and Daniel, G. – Effects of refining on the fibre structure of kraft pulps as revealed by FE-SEM and TEM: influence of alkaline degradation. Holzforschung, 58 (3): 226–232 (2004).

    Google Scholar 

  340. Ebeling, K. – A critical review of current theories for the refining of chemical pulps. In: International Symposium of Fundamental Concepts of Refining. IPC, Appleton, 1980 pgs. 1–33.

    Google Scholar 

  341. Robertson, A. A. and Mason, S. G. – Specific surface of cellulose by the liquid permeability method. Pulp and Paper Canada, 50 (12): 103–110 (1949).

    Google Scholar 

  342. Kappel, L.; Hirn, U.; Bauer, W. and Schennach, R. – A novel method for the determination of bonded area of individual fiber-fiber bonds. Nordic Pulp and Paper Research Journal, 24 (2): 199–205 (2009).

    Google Scholar 

  343. Hietanen, S. and Ebeling, K. – Fundamental aspects of the refining process. Paperi ja Puu, 72 (2): 158–170 (1990)

    Google Scholar 

  344. Johansson, M. H. and Samuelson, O. – Alkaline destruction of birch xylan in the light of recent investigations of its structure. Svensk Papperstiding, 80(16), 519–524 (1977).

    Google Scholar 

  345. Dekker, J. – New insights in beating leading to innovative beating techniques. In: Scientific and Technical Advances in Refining & Mechanical Pul** – Course Notes. PIRA: Stockholm, 2003 Paper 10.

    Google Scholar 

  346. Brogdon, B. N.; Mancosky, D. G. and Lucia, L. A. – New insight into modification during chlorine dioxide bleaching sequences. Part III: modifications in (EO). In: Fall Conference. TAPPI, 2003.

    Google Scholar 

  347. Nasab, N. R. – Understanding of no-load power in low consistency refining. Doctoral Thesis, The University of British Columbia, Vancouver, 2013. 106 pgs www.open.library.ubc.ca/media/download/pdf/24/1.0074101BARRA1

  348. Andersson, S.; Serimaa, R.; Paakkari, T.; Saranpää, P. and Pesonen, E. – Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). Journal of Wood Science, 49 (6):531–537 (2003).

    Google Scholar 

  349. Sepke, P.-W. and Meltzer, F. P. – Mahlung von faserstoffer für LWC – papiere. Das Papier, 47 (3): 123–127 (1993).

    Google Scholar 

  350. Meltzer, F. P. and Rauntnbach, R. – Neue möglichkeiten zur vorherbestimmung des technologischer mahlergebnisses. Das Papier, 47 (3): 578–583 (1994).

    Google Scholar 

  351. Sepke, P.-W.; Meltzer, F. P. and Musselmann, W. – Influencing specific energy in low consistency refining – a new approach. In: III International Refining Conference and Exhibition. PIRA/PST, Atlanta, 1995 Paper 21.dillen

    Google Scholar 

  352. Crow, H. – Energy saving in the refining of shor fibre pulps. In: Papermakers Conference. TAPPI, Philadelphia, 1996 pg. 9.

    Google Scholar 

  353. Joris, G. – Théorie mathématique du raffinage de la pâte à papier en basse concentration. Revue ATIP, 40 (10): 507–526 (1986).

    Google Scholar 

  354. Kerekes, R. – Characterization of pulp refiners by a C-factor. Nordic Pulp and Paper Research Journal, 05 (1): 3–8 (1990).

    Google Scholar 

  355. Lumiainen, J. – A new approach to the critical factors effecting refining intensity result in low-consistency refining. In: EUCEPA Meeting. EUCEPA, Stockholm, 1990 pg. 310.

    Google Scholar 

  356. Lumiainen, J. – New theory can improve practice. Pulp and Paper International, 32 (8): 46–47, 54 (1990).

    Google Scholar 

  357. Kerekes, R. J.; Clara, M.; Dharni, S. and Martinez, M. – Application of the C-factor to characterize pulp refiners. Journal of Pulp and Paper Science, 19 (3): J125–130 (1993).

    Google Scholar 

  358. Kerekes, R. J.; Ouellet, D. and Martinez, M. – New perspectives on refining intensity. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 3 23 pgs.

    Google Scholar 

  359. Charuel, R. C.; Roux, J. C.; Agostini, F. de e Roussele, M. – Influence de la géometrie des lames sur le raffinage des pátes chimiques. Revue ATIP, 42 (4): 153–160 (1988).

    Google Scholar 

  360. Kerekes, R. and Meltzer, F. – The influence of bar width on bar forces and fibre shortening in low consistency pulp refining. Nordic Pulp & Paper Research Journal 33(2): 220–225 (2018).

    Google Scholar 

  361. Olender, D.; Wild, P.; Byrnes, P.; Ouellet, D. and Sabourin, M. – Forces on bars in high-consistency mill-scale refiners: Effect of consistency. Nordic Pulp and Paper Research Journal, 23 (2): 218–223 (2008).

    Google Scholar 

  362. Berna, J. E. R.; Martinez, M. and Olson, J. – Power–gap relationships in low consistency refining. Nordic Pulp and Paper Research Journal, 34 (1): 36–45 (2019).

    Google Scholar 

  363. Demuner, B. J. – Alternatives to improve eucalypt kraft pulp refining. https://www.eucalyptus.com.br/artigos/outros/2001_Refining_7thBSCL_final.pdf

  364. Kondora G. and Asendrych, D – Flow modelling in a disc refinier. In: 14th International Conference on Fluid Flow Technologies, Budapest, 2009 8 pgs https://www.researchgate.net/publication/265563544_Flow_Modelling_in_a_Disc_Refiner

  365. Kurdin, J. A. – High consistency refining of chemical (pulp) fibres. In: Refining Chemical Pulps Seminar. Doschi Association, Appleton, 1986 pg 15.

    Google Scholar 

  366. Lumiainen, J. – Refining of chemical pulp. In: Papermaking Science and Technology. Volume 8 – Papermaking Part 1 – Stock preparation and wet end, Chapter 4. Ed. Gullichsen, J. and Paulapuro, H. Finnish Paper Engineers’ Association/Paperi ja Puu Oy, Hesinki: 2000 pg. 86.

    Google Scholar 

  367. Roux, J. C. and Bloch, J. F. – Lubrication theory explains the modification of fiber properties in the refining process. AIP Conference Proceedings 1558, 1095 (2013) https://aip.scitation.org/doi/10.1063/1.4825697

  368. Min, B. G.; Lee, J. Y.; Kim, C. H.; Park, S. H.; Lee, M. S.; Gu, H. G. and Lee, C. Y. – New technology for develo** a lightweight refiner plate for hardwood kraft pulp fibers. BioResources, 15 (4): 9128–9142 (2020).

    Google Scholar 

  369. Christopher, L.; Demler, C. L.; Beder-Miller, S. and e Aldridge, R. – Refining case study: using improved refiner control to ncrease pulp quality and paper machine performance. In: Paper Conference, New Orleans, 2012 39 pgs

    Google Scholar 

  370. Rajendra D., Deshpande, R. D. – Energy considerations in stock preparation refining modified by recycling. Master’s Thesis. Western Michigan University, Kalamazoo, 1988 164 pgs

    Google Scholar 

  371. Baker, C. F. – Optimization of paper mill refining systems. In: 3rd International Refining Conference. PIRA/IPST, Atlanta, 1995 Paper 13.

    Google Scholar 

  372. Rihs, J. – Low consistency refining – theory vs practice. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 10 15 pgs.

    Google Scholar 

  373. Radoslavova, D.; Roux, J. C. and Silvy, J. – The beating of pulp considered as a hydrodynamic process. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta, 1995 Paper 6 32 pgs.

    Google Scholar 

  374. Crook, J. – The dream revisited – an update on Brazilian refining technology. In: III International Refining Conference and Exhibition. PIRA/IPST, Atlanta: 20-22/03/1995 Paper 14 12 pgs.

    Google Scholar 

  375. Luengo, J.; Segura, C. and González, R. – Effect of refining intensity on properties of eucalyptus fibers – Santa Fe pulp – CMPC. In: 8th International Colloquium on Eucalyptus Pulp, Concepción, 2012 28 slides

    Google Scholar 

  376. Baker, C. F. – Various options for the control of refining process. In: IV International Refining Conference. PIRA, Fiuggi: 18-20/03/1997 Paper 16 pgs. 249–264.

    Google Scholar 

  377. Welch, L. V. and Kerekes, R. J. – Characterization of the PFI mill by t

    Google Scholar 

  378. Mayade, T. L. – Statistical theory of chemical pulp refining: an innovative combined approach. Appita Journal, 50 (3): 237–244 (1997).

    Google Scholar 

  379. Baker, C. F. – Optimisation of refining in fine and speciality paper mill systems. In: Papermakers Conference. TAPPI, Philadelphia: 24-27/03/1996 pgs. 215–224.

    Google Scholar 

  380. Levlin, J. E. – Characterisation of Beating Result. In: International Symposium of Fundamental Concepts of Refining. IPC, Appleton: 16-18/09/1980 pgs. 131.

    Google Scholar 

  381. Baker, C. F. – The refining of nonwood fibres. In: IV International Refining Conference. PIRA, Fiuggi: 18-20/03/1997 Paper 10 pgs. 151–180.492. Prasad, D. Y.; Jameel, H. and Gratzl, J. – Extended delignification of hardwood with AQ/Polysulfide. Tappi Journal, 78 (9): 151 (1995).

    Google Scholar 

  382. Manfredi, V.; Vilela, C. B. and Claudio-da-Silva Jr. E. – Efeito das variáveis operacionais de refino na evolução das propriedades da polpa refinada. In: Congresso Anual de Celulose e Papel. ABTCP, São Paulo, 1986 pgs. 189–207.

    Google Scholar 

  383. Manfredi, V. – Optimizing eucalyptus pulp refining. In: International Papermaking & Environment Conference. Ed. Yang, S.; Ni, Y e Liu, Z. Tian** University of Science and Technology, Tian** – China: 12-14/05/2004 Book A pgs. 41–50.

    Google Scholar 

  384. Lundin, T.; Batchelor, W. and Fardim, P. – Fiber trap** in low-consistency refining: new parameters to describe the refining process. Tappi Journal, 7 (7): 15–21 (July 2008).

    Google Scholar 

  385. Ratnieks, E. and Mora, E. – How the dryness of pulp influences the stock preparation. In: XXVI Congresso Anual de Celulose e Papel, ABTCP, São Paulo, 1993 pgs. 715–731.

    Google Scholar 

  386. Page, D. H. – The mechanism of strength development of dried pulps by beating. Svensk Papperstiding, 88 (3): R30–35 (1985).

    Google Scholar 

  387. Page, D. H. – The beating of chemical pulps – the action and the effects. In Fundamentals of Papermaking, Trans. of the IXth Fund. Res. Symp. Cambridge, 1989, pgs. 1–38.

    Google Scholar 

  388. Lindbrant, O. and Mohlin, U-B. – Changes in fiber structure due to refining as revealed by S.E.M. In: International Symposium of Fundamental Concepts of Refining. IPC, Apleton: 16-18/09/1980 pgs. 61-xxx.

    Google Scholar 

  389. Swerin, A. and Ödberg, L. – Flocculation and floc strength in suspensions flocculated by retention aids. Nordic Pulp and Paper Reserarch Jorunal, 8 (1): 141–146 (1993).

    Google Scholar 

  390. Tam Doo, P. A. and Kerekes, R. J. – The effect of beating and low amplitude flexing on pulp fibre flexibility. Journal of Pulp and Paper Science, 15 (11): 36–42 (1989).

    Google Scholar 

  391. Sha, J.; Nikbakht, A.; Wang, C.; Zhang, H. and Olson, J. – The effect of consistency and freeness on the yield stress of chemical pulp fibre suspensions. BioResources, 10(3), 4287–4299 (2015).

    Google Scholar 

  392. Lundin, T.; Batchelor, W. and Fardim, P. – Effect of bar edge conditions on fibre trap** in low consistency refining. In: 62nd Appita Annual Conference and Exhibition, Rotorua, 2008 pgs. 199–2006 https://search.informit.org/doi/book/10.3316/informit.APP62

  393. Hietanen, S. and Ebeling, K – Control of heterogeneity of the refining action. In: International Conference of New Technologies in Refining: Advances in Refining Technologies. PIRA, Birminghan, 1986 Volume I pgs. 1–27

    Google Scholar 

  394. Fox, T. S.; Brodkey, R. S. and Nissan, A. H. – High-speed photography of stock transport in a disk refiner. Tappi Journal, 62 (3): 55–58 (1979)

    Google Scholar 

  395. Fox, T. S. – Inside a disc refiner. In: International Symposium of Fundamental Concepts of Refining. IPC, Appleton, 1980 pgs. 281–313.

    Google Scholar 

  396. Jiang, Z.-H, van Lierop, B. and Berry, R. – Chlorine dioxide bleaching in the presence of an aldehyde. US Patent 6,235,154 B1 (issued May 22, 2001)

    Google Scholar 

  397. Bordin, R.; Roux, J.-C. and Bloch, J.-F. – Global description of refiner plate wear in low consistency beating. Nordic Pulp and Paper Research Journal, 22 (4): 529–534 (2007).

    Google Scholar 

  398. Baker, C. – The refining of non-wood fibres. In: African Pulp and Paper Week. TAPPSA (2004) http://www.tappsa.co.za/archive2/APPW_004/Title2004/The_refining_of_non-wood.html

  399. Panthai, S. and Somboon, P. – Examination of separate and mixed refining methods on softwood and hardwood pulps for linerboard production. Kasetsart Journal – Natural Science, 48: 540–547 (2014).

    Google Scholar 

  400. Wallace, B. W. – Dryer section energy use reduced up to 15 % with computer control. In: Processes Control for Pulp and Paper Mills. Ed. Smith, K. E. – Miller Freedman Publications, 1983 Chapter 25 pgs. 98–100.

    Google Scholar 

  401. Kerekes, R. J. and Tam Doo, P. A. – The effect of beating and low-amplitude flexing on pulp fibre flexibility. Journal of Pulp and Paper Science, 15 (1): 36 (1989).

    Google Scholar 

  402. Ghatak, H. R. – A comminution model for laboratory beating. Appita Journal, 58 (3): 127–128 (2005)

    Google Scholar 

  403. Lindström, T.; Ljunggren, S.; Ruvo, A. de e Söremark, C. – Dissolution of carbohydrates and lignin during beating of kraft pulps. Svensk Papperstiding, 81 (12): 397–402 (1978).

    Google Scholar 

  404. Bajpai, P., Mishra, S. P., Mishra, O. P., Kumar, S. and Bajpai, P. K. – Use of enzymes for reduction in refining energy – laboratory studies. Tappi Journal, 5 (11): 25–32 (2006).

    Google Scholar 

  405. Roux, J-C. and Joris, G. – How load is distributed in an industrial disc refiner. In: International Refining Conference. PIRA, Barcelona, 2005 Paper 13.

    Google Scholar 

  406. Yasumura, P. K. and Park, S. W. -Novos aspectos sobre ações de refino do moinho PFI e refinadores industriais de disco em fibras. In: 45th ABTCP International Pulp and Paper Congress e VII IberoAmerican Congress on Pulp and Paper Research. São Paulo, 2012 8 pgs

    Google Scholar 

  407. Khokhar, G. M. – Numerical simulation of the flow in a disc refiner. Master’s Thesis. Royal Institute of Technology, Stockholm, 2011 59 pgs https://www.lcrl.ppc.ubc.ca/files/2013/02/2011-Khokhar-MSc-Thesis.pdf

  408. Rihs, J. – Refining recycled fibers for brown and white grades. In: Papermakers Conference. TAPPI, Nashville, 1992 pgs. 239–245.

    Google Scholar 

  409. Pashinskii, V.; Pedotova, B.; Komisarchuk, G; Maslakov, V. and Voronova, G. – Beating of hardwood pulp in a multi-disk refiner. Sub. Tr. Ukr. Nauch.-Issled. Inst. Tsellyul. – Bumazh. Prom. (18): 5–10. (1975) according to ABIPST, 68 (3): 342 reference 39426(AS).

    Google Scholar 

  410. Ouellet, D.; Bennington, C. P. J.; Senger, J. J.; Borisoff, J. F. and Martiskainen, J. M. – Measurement of pulp residence time in a high-consistency refiner. Journal of Pulp and Paper Science, 22 (8): J301–305 (1996).

    Google Scholar 

  411. Bordin, R.; Toux, J-C. and Block, J-F. – No-load characterization of a low-consistency disc refiner for na efetive application of refining theories. Engineering, Pul** and Environmental Conference, TAPPI, TAPPI Engineering, Pul** and Environmental Conference, Jacksonville, 2007 33 pgs.

    Google Scholar 

  412. Hietanen, S. and Ebeling, K. – Heterogeneity in refining action: effects on fiber and paper structure. In: International Paper Physics Conference. TAPPI/CPPA, Cape Cod, 1983 pgs. 27–39.

    Google Scholar 

  413. Hietanen, S. – The role of fiber flocculation in chemical pulp refining. Paperi ja Puu, 73 (3): 249–259 (1991).

    Google Scholar 

  414. Page, D. H., Kosky, J. and Booth, D. – Some initial observations on the action of the beater. BP&BIRA Bulletin, 28: 15–21 (1962).

    Google Scholar 

  415. Waterhouse, J. F. – Characterizing pulps for paper-machine runnability. In: Engineering/Process and Product Quality Conference & Trade Fair. TAPPI, Anaheim, 1999 Volume 3 pgs. 1195–1204.

    Google Scholar 

  416. Eriksen, O.; Holmqvist, C. and Mohlin, U-B. – Fibre floc drainage – a possible cause for substantial pressure peaks in low-consistency refiners. Nordic Pulp and Paper Research Journal, 23 (3): 321–326 (2008).

    Google Scholar 

  417. Almeida, L. F. – Nova tecnologia para refinação em baixa consistência. In: 45th ABTCP International Pulp and Paper Congress and VII Ibero American Congress on Pulp and Paper Research. São Paulo, 2012 9 pgs.

    Google Scholar 

  418. Wittberg, L. P.; Björkman, M.; Khokhar, G.; Mohlin, U-B. and Dahlkild, A. – Flow conditions in the grooves of a low-consistency refiner. Nordic Pulp & Paper Research Journal, 27 (2): 173–183 (2012).

    Google Scholar 

  419. Fox, T. S.; Brodkey, R. S. and Nissan, A. H. – Inside a disk refiner. Tappi Journal, 65 (7): 80–83 (1982).

    Google Scholar 

  420. Groome, E. J. and Gerhardt, T. D. – Fiber retention time in a disk refiner. In: International Symposium on Fundamental Concepts of Refining. IPC, Appleton, 1980. pgs. 21–29.

    Google Scholar 

  421. Bordin R.; Roux, J.-C. and Bloch, J.-F. – New technique for measuring clearance in low-consistency refiners. Appita Journal, 61 (1): 71–77 (2008).

    Google Scholar 

  422. Arjas, A. – Influence of residence time distribution on pulp properties. In: International Symposium of Fundamental Concepts of Refining. IPC, Appleton, 1980 pg 61

    Google Scholar 

  423. Olejnik, K. – Effect of the free swelling of refined cellulose fibres on the mechanical properties of paper. Fibres & Textiles in Eastern Europe, 1 (90): 113–116 (2012).

    Google Scholar 

  424. Gallay, W. – Some aspects of the theory of the beating process. In: Fundamentals of Papermaking Symposium. PIRA Cambridge, 1961 pgs. 377–387.

    Google Scholar 

  425. Johansson, O. – A new optimization approach can lead to significant improvement of the refining efficiency. In: Scientific and Technical Advances in Refining & Mechanical Pul** – Course Notes. PIRA: Stockholm: 25-26/03/2003 Paper 13.

    Google Scholar 

  426. Lindqvist, H.; Salminen, K.; Kataja, J.; Retulainen, E.; Fardim, P. and Sundberg, A. – The effect of fines on dewatering, wet and dry web properties. In: Paper Conference, Covington, 2011 pgs 887–894 https://www.tappi.org/content/events/11papercon/documents/285.315%20docx.pdf

  427. Reiner, F. J. M. – Mecanismos de ligação entre as fibras e a importância do refino. O Papel, 55 (1): 29–32 (1994).

    Google Scholar 

  428. Steffens, D. – Ultrasonic technology – measurements of paper orientation and elastic properties. In: XXVII Congresso Anual de Celulose e Papel. ABTCP, São Paulo, 1994 pgs. 661–681.

    Google Scholar 

  429. Niskanen, K. – Strength and fracture of paper. In: 10th Fundamental Research Symposium – Products of Papermaking. PIRA, Oxford, 1993 Volume 2 pgs. 641–725.

    Google Scholar 

  430. Zhang, G.; Hiltunen, E.; Kettunen, H.; Nisjanen, K.; Laine, J. E. and Paulapuro, H. – Effects of wet strain on fracture properties of paper in comparison to refining. Nordic Pulp and Paper Research Journal, 17 (1): 45 (2002).

    Google Scholar 

  431. Goosen, D. R., Olson, J. A. and Kerekes, R. J. – The role of heterogeneity in compression refining. Journal of Pulp and Paper Science, 33 (2): 110–114 (2007).

    Google Scholar 

  432. Ghatak, H. R. – Analysis of laboratory beating by fiber settling time frequency distributions. Tappi Journal, 2 (11): 3–6 (2003)

    Google Scholar 

  433. Vainio A. K. and Paulapuro, H – Interfiber bonding and fiber segment activation in paper. Bioresources, 2 (3):442–458 (2007).

    Google Scholar 

  434. Heitmann, J. A. – Pulp properties. In: Pulp and Paper Manufacture – Mill Control & Control Systems: Quality & Testing, Environmental, Corrosion, Electrical. Ed.: Kouris, M e Kocurek, M. J. The Textbook, Committee of the Paper Industry, Atlanta/Montreal, 1992, pgs. 85–98.

    Google Scholar 

  435. Marton, J. and Marton, T. – Some new principles to optimize rosing sizing. Tappi Journal, 65 (11):105–109 (1982).

    Google Scholar 

  436. French, J. and Maddern, K. N. – A mini pulp evaluation procedure. Appita Journal, 47 (1): 38–44 (1994).

    Google Scholar 

  437. Curto, J.; Simões, R. and Silvy, J. – The influence of bleaching, beating and drying in the wet fibre flexibility of Pinus pinaster kraft pulp. In: 12th International Symposium on Wood and Pul** Chemistry. Madison, 2003 Volume 3 pgs. 287–289.

    Google Scholar 

  438. Paavilainen, L. – Bonding potential of softwood sulphate pulp fibres. Paperi ja Puu, 76 (3): 162 (1994).

    Google Scholar 

  439. Brown, Jr, J. C. – Determination of the exposed specific surface of pulp fibers from air permeability measurements. Tappi Journal, 33 (3): 130–137 (1950).

    Google Scholar 

  440. McKinney, R. – A review of stickie control methods, including the role of surface phenomena in control. In: Paper and Board Division Conference. Gatwick, 1989 Paper 4.

    Google Scholar 

  441. Agarwal, S.B.; Genco, J. M.; Cole, B. J. W. and Miller, W. – Kinetics of oxygen delignification. Journal of Pulp and Paper Science, 25 (10): 361–366 (1999).

    Google Scholar 

  442. Kibblewhite, R. P. – Interrelations between pulp refining treatments, fibre and fines quality, and pulp freeness. Paperi Puu, 57 (8): 519–526 (1975).

    Google Scholar 

  443. Kibblewhite, R. P. – Fractures and dislocations in the walls of kraft and bisulphite pulp fibers Cellulose Chemistry and Technology, 10 (2): 497–503 (1976)

    Google Scholar 

  444. Marton, R. and Alexander, S. – Effect of beating and wet-pressing on single fiber and sheet properties. Espra Research Reports, 43 (II): 17 (1966).

    Google Scholar 

  445. Kure, K. A. and Dahlqvist, G. – Development of structural fibre properties in high intensity refining. Pulp and Paper Canada, 99 (7): 59–63 (1998).

    Google Scholar 

  446. Turt, V.; Genco, J. M. and Co A. – Effect of refining on fiber properties. In: Engineering Conference. TAPPI, San Francisco, 1994 pg. 273–280.

    Google Scholar 

  447. Joris, G. and Roux, J-C. – The dynamic freeness tester. In: Scientific and Technical Advances in Refining & Mechanical Pul** – Course Notes. PIRA: Stockholm, 2003 Paper 6.

    Google Scholar 

  448. Byrd, V. L.; Horn, R. A. and Fahey, D. J. –How refining of vessel elements affects offset printing papers. Paper Trade Journal, 151 (46): 55–59 (1967).

    Google Scholar 

  449. Bian, L.; Liu, S.; Pu, Y.; Liu, C. and Yuan, L. – Appraisal of a disk refiner performance. Guowai Zaozshi, 16 (1): 28–31 (1997) according to ABIPST, 68 (2): 123 reference 1409(AS).

    Google Scholar 

  450. Fan, X.; Jeffrey, D. J. and Ouellet, D. – A stochastic model for the residence time of pulp in a single-disc chip refiner. Journal of Pulp and Paper Science, 20 (11): 343–349 (1994).

    Google Scholar 

  451. Tonoli, G. H. D.; Teixeira, E. M.; Corrêa, A. C.; Marconcini, J. M.; Caixeta, L. A.; Silva, M. A. P. da e Mattoso, L. H. C. – Cellulose micro/nanofibres from eucalyptus kraft pulp: Preparation and properties. Carbohydrate Polymers, 89 (1): 80–88 (2012).

    Google Scholar 

  452. Eibinger, K; Eichinnger, R. and Bauer, W. – Property development of virgin and recycled fibres treated with compression refining in a PFI mill, In: International Refining Conference, PIRA, 2005 12 pgs https://www.researchgate.net/publication/267694160_Property_development_of_virgin_and_recycled_fibres_treat

  453. Grzegorz, K. and Dariusz, A. – Flow modelling in a low consistency disc refiner, Nordic Pulp & Paper Research Journal 28 (1), 119–130 (2013).

    Google Scholar 

  454. Khlebnikov, A. A.; Pashinnskii, V. F.; Gonharov, V. N. and Smirnova, E. A. – Analysis of the forces involved in the operation of a conical refiner. Tr. Leningr., 22: 129–136 (1969) [1039, 1163].

    Google Scholar 

  455. Goncharov, V. N. – Force factors in a disk refiner and their effect on the beating process. Bumazh. Prom., (5): 12–14 [1163]

    Google Scholar 

  456. Koskenhely K.; Nieminen, K.; Hiltunen, E. and Paulapuro, H. – Comparison of plate and conical fillings in refining of bleached softwood and hardwood pulps. Paperi ja Puu, 87 (7): 458–463 (2005).

    Google Scholar 

  457. Batchelor, W.J. – Effects of flocculation and floc trap** on fibre treatment in low consistency refining. Journal of Pulp and Paper Science. 27 (7): 249–252 (2001).

    Google Scholar 

  458. Stephansen, E. – Contribution to the understanding of the mechanism of the beating process. Norsk Skogindustri, 21 (8): 266 (1967).

    Google Scholar 

  459. Odabas, N.; Henniges, U.; Potthast, A. and Rosenau, T. – Cellulosic fines: properties and effects. Progress in Materials Science, 83: 574–594 (2006).

    Google Scholar 

  460. Colodette, J. L.; Ghosh, A. K.; Dhasmana, B.; Singh, U. P.; Gomide, J. L. and Singh, R. P. – Bleaching processes for market grade TCF pulps. In: International Non-Chlorine Bleaching Conference. Pulp & Paper/Emerging Technology Transfer, Amelia Island, 1994 Paper 7-1 22 pgs.

    Google Scholar 

  461. El-Sharkawy, K. – Different approaches to tailoring chemical pulp fibres. Doctoral Thesis. Helsinki University of Technology, Espoo, 2008 64 pgs http://lib.tkk.fi/Diss/2008/isbn9789512296224/isbn9789512296224.pdf

  462. Steenberg, B. – Review of the effect of mechanical treatment of fibres. Svensk Paperstidning, 66 (22): 933–939 (1963)

    Google Scholar 

  463. Heymer, J. O. – Measurement of heterogeneity in low consistency pulp refining by comminution modeling. Doctoral Thesis. The University of British Columbia, Vancouver, 2009 107 pgs. http://turbulence-initiated.sites.olt.ubc.ca/files/2013/01/2009-Heymer-PhD-thesis.pdf

  464. Mohlin, U-B. – Refining intensity and gap clearance. In: 9th International Refining Conference. No14, PIRA, Vienna, 2006.

    Google Scholar 

  465. Loijas, M. – Factors affecting the axial force in low-consistency refining. Licentiate Degree. Tampere University of Applied Sciences. Tampere. 2010 53 pgs https://www.theseus.fi/bitstream/handle/10024/16798/Loijas_Marko.pdf?sequence=2&isAllowed=y

  466. Vaz, A.; Simões, R. and Silvy, J. – Refining rheological response of chemical pulp fibre suspensions. In: 10th World Congress of Chemical Engineering, EFCE, Barcelona, 2017 Abstract https://ubibliorum.ubi.pt/handle/104 00.6/9627.

  467. Nordman, L.; Levlin, J.-E.; Makkonen, T. and Jokisalo, H. – Conditions in na LC refiner as observed by physical measurements. In: International Symposium on Fundamental Concepts of Refining. IPC, Appleton, 1980 pgs. 121–130.

    Google Scholar 

  468. Wagle, D. G.; Lee, C. W. and Brodley, R. S. – Further comments on a visual study of pulp floc dispersion mechanisms. Tappi, 71 (9): 137–141 (1988).

    Google Scholar 

  469. Peralta, C.; Piçarra, E.; Santos, A.; Anjos, O. and Simões, R. – Effect of specific edge load on Eucalyptus globulus paper properties. In: 2° International Conference on Environmentally – Compatible Forest Products. Proceedings of Ecowwod – 2006 pgs: 499–505 https://www.researchgate.net/publication/259822897_Effect_of_specified_edge_load_on_Eucalyptus_globulus_paper_properties

  470. Przybysz, P.; Dubowik, M.; Małachowska, E., Kucner, M., Gajadhur, M. and Przybysz, K. – The effect of the refining intensity on the progress of internal fibrillation and shortening of cellulose fibers. BioResources, 15 (1): 1482–1499 (2020)

    Google Scholar 

  471. Nunes, T. F. G. – Produção, caracterização e aplicação de nanofibras de Celulose. Master’s Thesis Universidade de Coimbra, Coimbra. 2014 81 pgs. www.eg.uc.pt/bitstream/10316/30004/3/Produ%C3%A7%C3%A3o,%20caracteriza%C3%A7%C3%A3o%20e%20aplica%C3%A7P%C3%A3%20nanofibras%20de%20celulose

  472. Lipshitz, H.; Bridger, M. and Derman, G. – On the relationship between topography and gloss. Tappi Journal, 73 (10): 237 (1990).

    Google Scholar 

  473. Young, J. H. – Fiber preparation and approach flow. In: Pulp and Paper Chemistry and Chemical Technology – Volume III. Ed. Casey, J.P., John Wiley & Sons, New York, 1980.

    Google Scholar 

  474. Rangamannar, G. and Silveri, L. – Effective secondary fiber treatment process for high quality deinked pulp. Tappi Journal, 73 (7): 188–191 (1990).

    Google Scholar 

  475. Gabl, H. – Pilot scale optimisation of refining conditions for fractionated recycled furnishes. In: Refining and Mechanical Pul**. PIRA, Barcelona: 2005 Paper 12.

    Google Scholar 

  476. Egenes, T. H. and Helle, T. – Water removal from pulp suspensions in screw press. In: XXIII Congresso Anual de Celulose e Papel. ABTCP, São Paulo, 1990 pgs. 113–128.

    Google Scholar 

  477. Page, D. H. – The axial compression of fibres – a newly discovered beating action. Pulp and Paper Magazine Canada, 67 (1): 2–12 (1966

    Google Scholar 

  478. Belle, J. Kleemann, S.; Odermatt, J. and Olbrich, A. – A new method showing the impact of pulp refining on fiber-fiber interactions in wet webs. Nordic Pulp & Paper Research Journal, 31 (2): 205–212 (2016).

    Google Scholar 

  479. Strazdins, E. – Chemistry and application of rosin size. In: The sizing of paper. Ed. Raynolds, W. F. TAPPI Press, Atlanta, 156 p 2nd Ed. 1989.

    Google Scholar 

  480. Atack, D. – Advances in beating and refining. In: Transactions of the Oxford Symposium, British Pulp Paper and Board Industry Federation, London, 1978 pg. 261–297.

    Google Scholar 

  481. Bhardwaj, N. K. – Refining of bamboo long fiber fraction pulp effects on wet web and dry strength properties of paper. Cellulose Chemistry and Technology, 53 (1–2): 113–120 (2019).

    Google Scholar 

  482. Hou, Q.; Yang, B.; Liu, W.; Liu, H.; Hong, Y. and Zhang, R. – Co-refining of wheat straw pulp and hardwood kraft pulp, Carbohydrate Polymers, 86 (1), 255–259 (2011).

    Google Scholar 

  483. Hietanen, S. – Development of a fundamentally new refining method. Part 2: operating conditions of the new refiner. Paperi ja Puu, 72 (10): 952–960 (1990).

    Google Scholar 

  484. Câmara, A. L. da e Brandão, P. R. G. – Avaliação da adsorção de piche (pitch) no processo de fabricação do papel por talco brasileiro. O Papel, 65 (4): 67–78 (2004).

    Google Scholar 

  485. Sundström, L.; Brolin, A. and Hartler, N. – Fibrillation and its importance for the properties of mechanical pulp fiber sheets. Nordic Pulp and Paper Research Journal, 8 (4): 379–383 (1993).

    Google Scholar 

  486. El-Hosseiny, F. – The effect of sheet densification on the shape of its stress-strain curve. Journal of Pulp and Paper Science, 20 (12): J366–370 (1994).

    Google Scholar 

  487. Seth, R. S.; Robertson, A. G.; Mai, Y.-W. and Hoffmann, J. D. – Plane stress fracture toughness of paper. Tappi Journal, 76 (2): 109–116 (1993).

    Google Scholar 

  488. Parham, R. A. – Ultra-Structure and Chemistry. In: Pulp and Paper manufacture – Volume I – Properties of Fibrous Raw Materials and their Preparation for Pul**. E.: Kocurek, M. J. and Stevens, C. F. B. The Joint Textbook Committee of the Paper Industry, Atlanta/Montreal, 1983 pgs. 35–45.

    Google Scholar 

  489. Goncharov, V. N. – Stostoyanie i perspektivy sovershnstvovaniya oborudovaniya dlya razmola voloknistykh materialov. Tsellyul. Bum. Karton, 7/8: 20–24 (1995) according to ABIPST, 67 (9): 1337 reference 12645(AS)

    Google Scholar 

  490. Ohsawa, J.; Wakai, M.; Komatsu, Y.; Yoneda, Y.; Nagasawa, T. – Prevention of vessel picking trouble in tropical hardwood pulps – II. Vessel separation and high consistency bleating. Journal of Japanese Wood Research Society, 30 (9): 742–749 (1984).

    Google Scholar 

  491. Sari, A.; Agneta, F.; Kariniemi Merja, K. and Särkilahti Airi, S, – Evaluation of vessel picking tendency in printing. O Papel, 73 (1): 79–85 (2012)

    Google Scholar 

  492. Mukoyoshi, S.; Ohtake, T.; Ohsawa J. – Mechanism of vessel separation with hydrocyclone I. Vessel separation with centri-cleaner. Japan Tappi Journal, 40 (11) 55–63 (1986).

    Google Scholar 

  493. Rissato, T. C. – Influência do refino de baixa intensidade no consumo energético e nas propriedades do papel. Monografia Latu-sensu. Universidade Federal de Viçosa, Viçosa, 2010 71 pgs

    Google Scholar 

  494. Ratnieks, E., Demler, C. L. – Estamos obtendo o melhor na refinação de polpas de eucalipto? In: 24° Congresso Anual. ABTCP, São Paulo, 1991 19 pgs.

    Google Scholar 

  495. Mantar, E.; Co, A. and Genco, J. M. – Drainage characteristics of pulp slurries under dynamic conditions. Jornal of Pulp and Paper Sciency, 21 (2): 44–50 (1995).

    Google Scholar 

  496. Hubbe, M. A. and Panczik, M – Dewatering of refined bleached hardwood kraft pule by gravity vacuum and centrifugation with applied pressure. O Papel, 77 (10): 74–87 (2017).

    Google Scholar 

  497. Belle, K. and Odermatt, L. – Initial wet web strength of paper Cellulose, 23:2249–2272 (2016).

    Google Scholar 

  498. Kerekes, R. J. and Senger, J. J. – Characterizing refining action in low-consistency refiners by forces on fibres. Journal of Pulp and Paper Science, 32 (1): 1–8 (2006).

    Google Scholar 

  499. Hietaniemi, J. and Gullichsen, J. – Flow properties of medium-consistency fibre suspensions. Journal of Pulp and Paper Science, 22 (12): J469–474 (1996).

    Google Scholar 

  500. Lindström, T. – Der einfluss chemischer factoren auf faserquellung und papierfestigkeit. Das Papier, 34 (12): 561 (1980)

    Google Scholar 

  501. Olejnik, K.; Skalski, B.; Stanislawska, A.; Wysocka-Robak, A. – Swelling properties and generation of cellulose fines originating from bleached kraft pulp refined under different operating conditions. Cellulose 24: 3955–3967 (2017).

    Google Scholar 

  502. Claudio-da-Silva Jr., E. – Efeitos da moagem nas propriedades de fibras. Separata del boletin “Investigación y Técnica del Papel”, 75 (1983).

    Google Scholar 

  503. Rihs, J.; Albert, K. and Josephson, W. – Optimal refining of bleached tropical hardwood kraft for uncoated paper. In: 51st Annual General Conference. APPITA, Melbourne, 1997 Paper 4B21 pgs. 627–634.

    Google Scholar 

  504. Steel, C. L. – Evaluation of cell-wall modifying enzymes for improved refining of pulp from two eucalyptus species. Master’s Thesis. University of the Free State, Bloemfontein, 2010 145 pgs https://scholar.ufs.ac.za/xmlui/handle/11660/5576

  505. Metelski, L. – Análise da ação enzimática na produção de papel visando a economia de energia. Trabalho de conclusão de curso, Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2018 53 pgs. www.repositorio.utfpr.edu.br:8080/jspui/bitstream/1/16466/1/PG_COENQ_2018_2_18

  506. Buzała K. P.; Przybysz, P.; Kalinowska, H.; Derkowska, M. – Effect of cellulases and xylanases on refining process and kraft pulp properties. PLoS ONE 11 (8): e0161575 (2016) https://doi.org/10.1371/journal.pone.0161575

  507. da Silva, J. C.; de Oliveira, R. C.; Larisse Ribas Batalha, L. R. B and Manfredi, M – Combination of enzymatic, mechanical and ultrasonic treatments for improvement of the properties of secondary pulps. Cerne, 19, (4): 653–660 (2013) https://www.scielo.br/j/cerne/a/TZF4bFXjshfxhVqCHJrVj3L/?lang=en

  508. Singh, R.; Bhardwaj, N. K. and Choudhury, B. – Cellulase-assisted refining optimization for saving electrical energy demand and pulp quality evaluation. Journal of Scientific & Industrial Research, 74 (8): 471–475 (2015).

    Google Scholar 

  509. Zhang, Q., Xu, M., **ng, L., Dang, C., Han, X., and Pu, J. – Enzymatic assisted ultrasonic pretreatment’s effect on poplar pulp properties. BioResources, 12 (3): 6832–6843 (2017).

    Google Scholar 

  510. Manfredi, M.; Oliveira, R. C. de; Siçba, J. C. da and, R. – Ultrasonic treatment of secondary fibers to improve paper properties. Nordic Pulp and Paper Research Journal, 28 (2):297 (2013).

    Google Scholar 

  511. Park, J-M. – Application of fracture toughness understanding to improve papermaking runnability. Journal of Korea TAPPI, 54 (1): 3–9 (2022).

    Google Scholar 

  512. Liu, H.; Dong, J.; **g, H.; **ya Guo, X. and Qiao, L. – Characterization of the parameters for the refining Intensity in terms of performance. Journal of Korea TAPPI, 51 (2): 26–39 (2019);

    Google Scholar 

  513. Helmuth, G.; Gorton-Hulgerth, A. and Takeshita, Y. – A new low consistency refiner improved fibre properties while reducing idle energy by up to 40%. In: Japan Tappi Annual Meeting. Japan Tappi, Hiroshima, Paper C-12 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manfredi, V. (2024). Refining the Chemical Pulps. In: Eucalyptus Kraft Pulp Refining. Springer, Cham. https://doi.org/10.1007/978-3-031-47285-5_8

Download citation

Publish with us

Policies and ethics

Navigation