Conducting Polymers Sensor

  • Reference work entry
  • First Online:
Handbook of Nanosensors

Abstract

The remarkable advantages of conductive polymers make them desirable materials for modern science and technology. As a result, scientists have shown a strong interest in develo** sensors based on conducting polymers (CPs) and their composites. Several features of conductive polymers, like high sensitivity, a fast reaction time, the ability to operate at room temperature, and the possibility of modifying the chemical and physical characteristics using a wide range of substituents, make them ideal for sensor technology. Conducting polymers are distinguished from other polymers by their electrochemical capacity to transform between an oxidized and reduced state in response to the movement of an anion or cation. This quality has led to the development of electrochemical signals for detecting electroactive anions and cations. This chapter discusses conducting polymers as sensors, including their design, operation, and significance. Also hybrid materials that incorporate CPs and a variety of inorganic components, as well as the applications for those mixed materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACE:

Acetamiprid

AI:

Artificial Intelligence

APS:

Ammonium Persulfate

ASPE:

Anodized Screen-Printed Electrode

ASSE:

All-Solid-State Electrodes

ASV:

Anodic Strip** Voltammetry

ATT:

5-Amino-4H-1,2,4-Triazole-3-Thiol

Au:

Gold

AuNPs:

Gold Nanoparticles

BI:

Bacterial Infections

C:

Carbon

CBM:

Carbendazim

CFP:

Cellulose Fiber Paper

CNTs:

Carbon Nanotubes

CP/NMNP:

Conducting polymer/noble metal nanoparticle

CPs:

Conducting polymers

2, 4-dn phz:

2, 4-dinitrophenylhydrazine

EAPs:

Electroactive polymers

ERPs:

Electroresponsive polymers

f-MWCNTs:

Functionalized Multi-Walled Carbon Nanotubes

GCE:

Glassy Carbon Electrode

GMA:

Glycidyl Methacrylate

iCVD:

initiated Chemical Vapor Deposition

IMD:

Imidacloprid

IPMC:

Ionic Polymer-Metal Composites

MIPs:

Molecularly imprinted polymers

MWCNTs:

Multiwall Carbon Nanotubes

NG:

Nitrogen-Doped Graphene

NPs:

Nanoparticles

PA:

Phytic Acid

PAMAM:

Poly(amidoamine)

PANI:

Polyaniline

PAN-MWCNTs NFs:

Polyacrylonitrile – Multiwall Carbon Nanotubes Nanofibers

PATT:

Poly-Amino-4H-1,2,4-Triazole-3-Thiol

PCT:

procalcitonin

PEDOT:

poly (3,4-ethylene dioxythiophene)

PL/PEDOT:

Phaseoloidin doped poly(3,4-ethyl-oxy thiophene)

PMC:

Pirimicarb

POC:

Point-of-Care

P-pABA-MnO2:

Poly-para amino benzoic acid-manganese oxide

p-PP:

Polypropylene fibers

p-PP/CNT/PANI:

Porous Polypropylene/Carbon Nanotube/Polyaniline

PPV:

Poly (p-phenylenevinylene)

PPy:

Polypyrrole

PPy-CB:

Polypyrrole-Carbon Black

PSS:

Poly(styrene sulfonate)

PT:

Polythiophene

PV4D4:

Poly(1,3,5,7-tetramethyl-tetra vinyl cyclotetrasiloxane)

rGO:

Reduced Graphene Oxide

rGO-AuNP:

Reduced graphene oxide-gold nanoparticle

RT:

Room Temperature

TPA:

Trans-polyacetylene

VOCs:

Volatile Organic Compounds

References

  1. Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG (1977) Electrical Conductivity in Doped Polyacetylene. Physical Review Letters 39(17):1098–1101

    Article  CAS  Google Scholar 

  2. Skotheim TA, Skotheim, T.A., & Reynolds, J. ((2007)) Conjugated Polymers: Processing and Applications (third ed.). CRC Press. (third ed.)0.656.

    Google Scholar 

  3. Le T-H, Kim Y, and Yoon H (2017) Electrical and Electrochemical Properties of Conducting Polymers. Polymers 9(4):150.

    Google Scholar 

  4. Wallace GG, Teasdale PR, Spinks GM, and Kane-Maguire LA, Conductive electroactive polymers: intelligent polymer systems. 2008: CRC press.

    Google Scholar 

  5. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. Current Applied Physics 1(4):247–267

    Article  Google Scholar 

  6. Aldea N, Turcu R, Nan A, Craciunescu I, Pana O, Yaning X, Wu Z, Bica D, Vekas L, Matei F (2009) Investigation of nanostructured Fe3O4 polypyrrole core-shell composites by X-ray absorbtion spectroscopy and X-ray diffraction using synchrotron radiation. Journal of Nanoparticle Research 11(6):1429–1439

    Article  CAS  Google Scholar 

  7. Ocampo C, Alemán C, Oliver R, Arnedillo ML, Ruiz O, Estrany F (2007) Copolymers of N-methylpyrrole and 3,4-ethylenedioxythiophene: structural, physical and electronic properties. Polymer International 56(6):803–809

    Article  CAS  Google Scholar 

  8. Aly KI, Younis O, Mahross MH, Orabi EA, Abdel-Hakim M, Tsutsumi O, Mohamed MG, Sayed MM (2019) Conducting copolymers nanocomposite coatings with aggregation-controlled luminescence and efficient corrosion inhibition properties. Progress in Organic Coatings 135:525–535

    Article  CAS  Google Scholar 

  9. Aly KI, Younis O, Mahross MH, Tsutsumi O, Mohamed MG, Sayed MM (2019) Novel conducting polymeric nanocomposites embedded with nanoclay: synthesis, photoluminescence, and corrosion protection performance. Polymer Journal 51(1):77–90

    Article  CAS  Google Scholar 

  10. Ramakrishnan S (2011) From a laboratory curiosity to the market place. Resonance 16(12):1254–1265

    Article  Google Scholar 

  11. Shegefti S, Mehdinia A, Shemirani F (2016) Preconcentration of cobalt(II) using polythionine-coated Fe3O4 nanocomposite prior its determination by AAS. Microchimica Acta 183(6):1963–1970

    Article  CAS  Google Scholar 

  12. Rajeev R, Sharma B, Mathew AT, George L, Y N S, and Varghese A (2020) Review—Electrocatalytic Oxidation of Alcohols Using Chemically Modified Electrodes: A Review. Journal of The Electrochemical Society 167(13):136508.

    Google Scholar 

  13. Bajpai M, Srivastava R, Dhar R, Tiwari RS (2016) Review on Optical and Electrical Properties of Conducting Polymers. Indian Journal of Materials Science 2016:5842763

    Article  Google Scholar 

  14. Pourtaheri E, Taher MA, Ali GA, Agarwal S, Gupta VK (2019) Low-cost and Highly Sensitive Sensor for Determining Atorvastatin Using PbTe Nanoparticles-Modified Graphite Screen-Printed Electrode. International Journal of Electrochemical Science 14:9622–9632

    Article  CAS  Google Scholar 

  15. Fouad OA, Ali GAM, El-Erian MAI, Makhlouf SA (2012) Humidity sensing properties of cobalt oxide/silica nanocomposites prepared via sol-gel and related routes. Nano 7(5)

    Google Scholar 

  16. Salehi Rozveh Z, Kazemi S, Karimi M, Ali GAM, Safarifard V (2020) Effect of functionalization of metal-organic frameworks on anion sensing. Polyhedron.

    Google Scholar 

  17. Thalji MR, Ibrahim AA, Chong KF, Soldatov AV, Ali GAM (2022) Glycopolymer-Based Materials: Synthesis, Properties, and Biosensing Applications. Topics in Current Chemistry 380(5):45

    Article  CAS  PubMed  Google Scholar 

  18. Beitollahi H, Khalilzadeh MA, Tajik S, Safaei M, Zhang K, Jang HW, Shokouhimehr M (2020) Recent Advances in Applications of Voltammetric Sensors Modified with Ferrocene and Its Derivatives. ACS Omega 5(5):2049–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nambiar S, Yeow JTW (2011) Conductive polymer-based sensors for biomedical applications. Biosensors and Bioelectronics 26(5):1825–1832

    Article  CAS  PubMed  Google Scholar 

  20. Wang X, Gu X, Yuan C, Chen S, Zhang P, Zhang T, Yao J, Chen F, Chen G (2004) Evaluation of biocompatibility of polypyrrole in vitro and in vivo. Journal of Biomedical Materials Research Part A 68A(3):411–422

    Article  CAS  Google Scholar 

  21. Rahman MA, Kumar P, Park D-S, Shim Y-B (2008) Electrochemical Sensors Based on Organic Conjugated Polymers. Sensors 8(1):118–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gupta SA, Singh JS (2021) A Study of Conducting Electrochemical Sensors Based on Molecularly Imprinted Polymer on Carbon Nanostructure Using Polypyrrole Film: A Review. J. Sci. Res 65:110–115

    Google Scholar 

  23. Gupta VK, Yola ML, Özaltın N, Atar N, Üstündağ Z, Uzun L (2013) Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin. Electrochimica Acta 112:37–43

    Article  CAS  Google Scholar 

  24. Zaabal M, Doulache M, Bakirhan NK, Kaddour S, Saidat B, Ozkan SA (2019) A Facile Strategy for Construction of Sensor for Detection of Ondansetron and Investigation of its Redox Behavior and Thermodynamic Parameters. Electroanalysis 31(7):1279–1290

    Article  CAS  Google Scholar 

  25. Apetrei C (2012) Novel method based on polypyrrole-modified sensors and emulsions for the evaluation of bitterness in extra virgin olive oils. Food Research International 48(2):673–680

    Article  CAS  Google Scholar 

  26. Dzulkurnain NA, Mokhtar M, Rashid JIA, Knight VF, Wan Yunus WMZ, Ong KK, Mohd Kasim NA, Mohd Noor SA (2021) A Review on Impedimetric and Voltammetric Analysis Based on Polypyrrole Conducting Polymers for Electrochemical Sensing Applications. Polymers 13(16):2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang T, Farajollahi M, Choi YS, Lin I-T, Marshall JE, Thompson NM, Kar-Narayan S, Madden JDW, Smoukov SK (2016) Electroactive polymers for sensing. Interface. Focus 6(4):20160026

    Google Scholar 

  28. Carpi F, Smela E (2009) Biomedical applications of electroactive polymer actuators. John Wiley & Sons

    Book  Google Scholar 

  29. Carpi F, Anderson I, Bauer S, Frediani G, Gallone G, Gei M, Graaf C, Jean-Mistral C, Kaal W, Kofod G, Kollosche M, Kornbluh R, Lassen B, Matysek M, Michel S, Nowak S, O’Brien B, Pei Q, Pelrine R, Rechenbach B, Rosset S, Shea H (2015) Standards for dielectric elastomer transducers. Smart Materials and Structures 24(10):105025

    Article  Google Scholar 

  30. Ji Y, Marshall JE, Terentjev EM (2012) Nanoparticle-Liquid Crystalline Elastomer Composites. Polymers 4(1):316–340

    Article  Google Scholar 

  31. Córdova F, Ismail Y, Martinez J, Al Harrasi A, and Otero T, Conducting polymers are simultaneous sensing actuators. SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. Vol. 8687. 2013: SPIE.

    Google Scholar 

  32. Pourtaheri E, Taher MA, Ali GAM, Agarwal S, Gupta VK (2019) Electrochemical detection of gliclazide and glibenclamide on ZnIn2S4 nanoparticles-modified carbon ionic liquid electrode. Journal of Molecular Liquids 289:111141

    Article  CAS  Google Scholar 

  33. Teo EYL, Ali GAM, Algarni H, Cheewasedtham W, Rujiralai T, Chong KF (2019) One-step production of pyrene-1-boronic acid functionalized graphene for dopamine detection. Materials Chemistry and Physics 231:286–291

    Article  CAS  Google Scholar 

  34. Schuster B (2018) S-Layer Protein-Based Biosensors. Biosensors 8(2):40.

    Google Scholar 

  35. Wang J (2023) Analytical electrochemistry. John Wiley & Sons

    Google Scholar 

  36. Zhang X, Ju H, Wang J (2011) Electrochemical sensors, biosensors and their biomedical applications. Academic Press

    Google Scholar 

  37. Cichosz S, Masek A, Zaborski M (2018) Polymer-based sensors: A review. Polymer Testing 67:342–348

    Article  CAS  Google Scholar 

  38. Boehler C, Aqrawe Z, Asplund M (2019) Applications of PEDOT in bioelectronic medicine. Bioelectronics in Medicine 2(2):89–99

    Article  Google Scholar 

  39. Kappen J, Skorupa M, Krukiewicz K (2023) Conducting Polymers as Versatile Tools for the Electrochemical Detection of Cancer Biomarkers. Biosensors 13(1):31

    Article  CAS  Google Scholar 

  40. Muguruma H (2018) Biosensors: Enzyme Immobilization Chemistry. In: Wandelt K (ed) Encyclopedia of Interfacial Chemistry. Elsevier, Oxford, pp 64–71

    Chapter  Google Scholar 

  41. Murthy HCA, Gebretsadik A, Haftu M, Nemera T, Bhattacharya T, Ravikumar CR (2023) 17 - Polymer composites for electrochemical sensor applications. In: Parameswaranpillai J, Ganguly S (eds) Polymeric Nanocomposite Materials for Sensor Applications. Woodhead Publishing, pp 405–436

    Chapter  Google Scholar 

  42. Naveen MH, Gurudatt NG, Shim Y-B (2017) Applications of conducting polymer composites to electrochemical sensors: A review. Applied Materials Today 9:419–433

    Article  Google Scholar 

  43. John A, Benny L, Cherian AR, Narahari SY, Varghese A, and Hegde G (2021) Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: a review. Journal of Nanostructure in Chemistry 11(1):1–31.

    Google Scholar 

  44. Wang G, Morrin A, Li M, Liu N, Luo X (2018) Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors. Journal of Materials Chemistry B 6(25):4173–4190

    Article  CAS  PubMed  Google Scholar 

  45. Randviir EP, Brownson DAC, Banks CE (2014) A decade of graphene research: production, applications and outlook. Materials Today 17(9):426–432

    Article  CAS  Google Scholar 

  46. Lee HL, Sofer Z, Mazánek V, Luxa J, Chua CK, Pumera M (2017) Graphitic carbon nitride: Effects of various precursors on the structural, morphological and electrochemical sensing properties. Applied Materials Today 8:150–162

    Article  Google Scholar 

  47. Abdelwahab AA, Abdel-Hakim M, Abdelmottaleb M, Elshahawy AS (2019) Palladium nanoclusters uniformly enveloped electrochemically activated graphene for highly sensitive hydrogen peroxide sensor. Electroanalysis 31(9):1672–1679

    Article  CAS  Google Scholar 

  48. Vashist SK, Luong JHT (2015) Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites. Carbon 84:519–550

    Article  CAS  Google Scholar 

  49. Ghislandi M, Tkalya E, Alekseev A, Koning C, de With G (2015) Electrical conductive behavior of polymer composites prepared with aqueous graphene dispersions. Applied Materials Today 1(2):88–94

    Article  Google Scholar 

  50. Abdelwahab AA, Naggar AH, Abd-Elmottaleb M, Abdel-Hakim M (2023) A sensor for selective dopamine determination based on overoxidized poly-1,5-diaminonaphthalene on graphene nanosheets. Electroanalysis 35(2):e202200112

    Article  CAS  Google Scholar 

  51. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: Where two small worlds meet. Science 314(5802):1107–1110

    Article  CAS  PubMed  Google Scholar 

  52. Wang J (2008) Electrochemical glucose biosensors. Chemical Reviews 108(2):814–825

    Article  CAS  PubMed  Google Scholar 

  53. Yamamoto T, Fukumoto H, Koizumi T-a (2009) Metal complexes of π-conjugated polymers. Journal of Inorganic and Organometallic Polymers and Materials 19(1):3–11

    Article  CAS  Google Scholar 

  54. Hryniewicz BM, De Alvarenga G, Deller A, Bach-Toledo L, Pesqueira C, Klobukoski V, and Vidotti M (2023) Sensing materials: Nanostructured platforms based on conducting polymers for sensing.

    Google Scholar 

  55. Li M, Wang W, Chen Z, Song Z, Luo X (2018) Electrochemical determination of paracetamol based on Au@graphene core-shell nanoparticles doped conducting polymer PEDOT nanocomposite. Sensors and Actuators B: Chemical 260:778–785

    Article  CAS  Google Scholar 

  56. Tamara MR, Lelono D, Roto R, Triyana K (2023) All-solid-state astringent taste sensor using polypyrrole-carbon black composite as ion-electron transducer. Sensors and Actuators A: Physical 351:114170

    Article  CAS  Google Scholar 

  57. Teng H, Song J, Xu G, Gao F, Luo X (2020) Nitrogen-doped graphene and conducting polymer PEDOT hybrids for flexible supercapacitor and electrochemical sensor. Electrochimica Acta 355:136772

    Article  CAS  Google Scholar 

  58. Deller AE, Hryniewicz BM, Pesqueira C, Horta RP, da Silva BJG, Weheabby S, Al-Hamry A, Kanoun O, Vidotti M (2023) PEDOT: PSS/AuNPs-based composite as voltammetric sensor for the detection of pirimicarb. Polymers 15(3):739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ansari AA, Malhotra BD (2022) Current progress in organic–inorganic hetero-nano-interfaces based electrochemical biosensors for healthcare monitoring. Coordination Chemistry Reviews 452:214282

    Article  CAS  Google Scholar 

  60. Simoska O, Stevenson KJ (2022) Electrochemical sensors for detection of Pseudomonas aeruginosa virulence biomarkers: Principles of design and characterization. Sensors and Actuators Reports 4:100072

    Article  Google Scholar 

  61. Runsewe D, Betancourt T, Irvin JA (2019) Biomedical application of electroactive polymers in electrochemical sensors: a review. Materials 12(16):2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Han R, Wang G, Xu Z, Zhang L, Li Q, Han Y, Luo X (2020) Designed antifouling peptides planted in conducting polymers through controlled partial do** for electrochemical detection of biomarkers in human serum. Biosensors and Bioelectronics 164:112317

    Article  CAS  PubMed  Google Scholar 

  63. Yang L, Wang H, Lü H, Hui N (2020) Phytic acid functionalized antifouling conducting polymer hydrogel for electrochemical detection of microRNA. Analytica Chimica Acta 1124:104–112

    Article  CAS  PubMed  Google Scholar 

  64. Çetin MZ, Guven N, Apetrei R-M, Camurlu P (2023) Highly sensitive detection of glucose via glucose oxidase immobilization onto conducting polymer-coated composite polyacrylonitrile nanofibers. Enzyme and Microbial Technology 164:110178

    Article  PubMed  Google Scholar 

  65. Gupta Y, Pandey CM, Ghrera AS (2022) Development of conducting cellulose paper for electrochemical sensing of procalcitonin. Microchimica Acta 190(1):32

    Article  PubMed  Google Scholar 

  66. Zhou Y, Lü H, Zhang D, Xu K, Hui N, Wang J (2023) Electrochemical biosensors based on conducting polymer composite and PAMAM dendrimer for the ultrasensitive detection of acetamiprid in vegetables. Microchemical Journal 185:108284

    Article  CAS  Google Scholar 

  67. Wang Y, Tang J, **ang L (2021) Detection of dopamine by a minimized electrochemical sensor using a graphene oxide molecularly imprinted polymer modified micropipette tip shaped graphite electrode. Journal of Chemical Research 45(7–8):702–707

    Article  CAS  Google Scholar 

  68. Nagarajan A, Sethuraman V, Sridhar TM, Sasikumar R (2023) Development of Au@NiO decorated polypyrrole composite for non-Enzymatic electrochemical sensing of cholesterol. Journal of Industrial and Engineering Chemistry 120:460–466

    Article  CAS  Google Scholar 

  69. Mei X, Ye D, Zhang F, Di C-a (2022) Implantable application of polymer-based biosensors. Journal of Polymer Science 60(3):328–347

    Article  CAS  Google Scholar 

  70. Ismail R, Šeděnková I, Svoboda J, Lukešová M, Walterová Z, Tomšík E (2023) Acid-assisted polymerization: the novel synthetic route of sensing layers based on PANI films and chelating agents protected by non-biofouling layer for Fe2+ or Fe3+ potentiometric detection. Journal of Materials Chemistry B 11(7):1545–1556

    Google Scholar 

  71. Manikandan R, Pugal Mani S, Sangeetha Selvan K, Yoon J-H, Chang S-C (2023) Anodized screen-printed electrode modified with poly(5-amino-4H-1,2,4-triazole-3-thiol) film for ultrasensitive detection of Hg2+ in fish samples. Journal of Electroanalytical Chemistry 929:117121

    Google Scholar 

  72. Rupini B (2023) Chapter 3: Conducting polymers as gas sensing material. In: Dhall S (ed) Carbon nanomaterials and their nanocomposite-based chemiresistive gas sensors. Elsevier, pp 75–103

    Google Scholar 

  73. Thalji MR, Ibrahim AA, Ali GAM (2021) Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. European Polymer Journal 160:110770

    Article  CAS  Google Scholar 

  74. Rodrigues J, Jain S, Shimpi NG (2023) 8 - Conducting polymer-based gas sensors. In: Shimpi NG, Jain S (eds) Carbon-based nanomaterials and nanocomposites for gas sensing. Elsevier, pp 181–232

    Chapter  Google Scholar 

  75. Wu G, Du H, Cha YL, Lee D, Kim W, Feyzbar-Khalkhali-Nejad F, Oh T-S, Zhang X, Kim D-J (2023) A wearable mask sensor based on polyaniline/CNT nanocomposites for monitoring ammonia gas and human breathing. Sensors and Actuators B: Chemical 375:132858

    Article  CAS  Google Scholar 

  76. Schröder S, Ababii N, Brînză M, Magariu N, Zimoch L, Bodduluri MT, Strunskus T, Adelung R, Faupel F, Lupan O (2023) Tuning the selectivity of metal oxide gas sensors with vapor phase deposited ultrathin polymer thin films. Polymers 15(3):524

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chakraborty P, Faricha A, Okamoto K, Kawakami H, Chang TFM, Sone M, Nakamoto T (2023) Toward planar atomic-gold decorated polyaniline gas sensors for enhanced electrochemical sensing. IEEE Sensors Journal 23(7):6481–6488

    Article  CAS  Google Scholar 

  78. Mohd Yazid SNA, Che Adnan AA, Isa IM, Saidin MI, Ahmad MS, Fun CS (2023) Conducting polymer functionalized graphene-based electrochemical sensors for sensing pollutants in water: Review paper. Journal of Electrochemical Science and Engineering 13(2):251–274

    Google Scholar 

  79. El-Akaad S, Mohamed MA, Abdelwahab NS, Abdelaleem EA, De Saeger S, Beloglazova N (2020) Capacitive sensor based on molecularly imprinted polymers for detection of the insecticide imidacloprid in water. Scientific Reports 10(1):14479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Adeosun WA, Asiri AM, Marwani HM (2020) Real time detection and monitoring of 2, 4-dinitrophenylhydrazine in industrial effluents and water bodies by electrochemical approach based on novel conductive polymeric composite. Ecotoxicology and Environmental Safety 206:111171

    Article  CAS  PubMed  Google Scholar 

  81. Prabhu K, Malode SJ, Shetti NP (2023) Carbon-based electrochemical sensor for the detection and degradation of persistent toxic carbendazim in soil and water sample. Electrocatalysis 14(1):88–97

    Article  CAS  Google Scholar 

  82. Ramdzan NSM, Fen YW, Anas NAA, Omar NAS, Saleviter S (2020) Development of biopolymer and conducting polymer-based optical sensors for heavy metal ion detection. Molecules 25(11):2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yang H, Zheng Q, Zhang P, Nie G, Ali T, Raza S (2023) Fabrication of MXene (Ti2C3Tx) based conducting polymer materials and their applications as anticancer and metal ions removal from wastewater. Surfaces and Interfaces 36:102493

    Article  CAS  Google Scholar 

  84. Pathak AK, Swargiary K, Kongsawang N, Jitpratak P, Ajchareeyasoontorn N, Udomkittivorakul J, Viphavakit C (2023) recent advances in sensing materials targeting clinical Volatile Organic Compound (VOC) biomarkers: a review. Biosensors 13(1):114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Singh R, Jaiswal S, Singh K, Fatma S, Prasad BB (2018) Biomimetic polymer-based electrochemical sensor using methyl blue-adsorbed reduced graphene oxide and functionalized multiwalled carbon nanotubes for trace sensing of cyanocobalamin. ACS Applied Nano Materials 1(9):4652–4660

    Article  CAS  Google Scholar 

  86. Pineda EG, Azpeitia LA, Presa MJR, Bolzán AE, Gervasi CA (2023) Benchmarking electrodes modified with bi-doped polypyrrole for sensing applications. Electrochimica Acta 444:142011

    Article  CAS  Google Scholar 

  87. Sonika VSK, Sharma G, Nayak R, Meher A, Samal P, Sharma A (2023) Nanocomposite of intrinsically conductive polymers used as the active component in acetone solvent sensors. Nanotechnology for Environmental Engineering

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abdel-Hakim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abdel-Hakim, M., Sayed, M.M. (2024). Conducting Polymers Sensor. In: Ali, G.A.M., Chong, K.F., Makhlouf, A.S.H. (eds) Handbook of Nanosensors. Springer, Cham. https://doi.org/10.1007/978-3-031-47180-3_71

Download citation

Publish with us

Policies and ethics

Navigation