Sensors for Heavy Metals and Dyes Detection for Water Analysis

  • Reference work entry
  • First Online:
Handbook of Nanosensors
  • 149 Accesses

Abstract

Today, the amount of pollutants in water is increasing worldwide. When heavy metals and dyes are present in aquatic environments more than the World Health Organization’s (WHO) allowed limits, issues can arise for both aquatic life and humans. Most water resources are contaminated by these highly toxic, carcinogenic, and nonbiodegradable contaminants, which cause serious health problems, including hypersensitivity reactions. To detect or quantify these pollutants, several analytical techniques have been developed, including highly sensitive, selective, fast, low-cost, simple to use, and accurate sensors. The detection methods can be mainly classified into three categories: spectroscopic, electrochemical, and optical sensors. The detection of various pollutants, their concentration ranges, and their detection limits using different sensors with different compositions are presented. There are now well-defined nano-sensors with a variety of forms and functionalities thanks to recent advances in material science, which have rekindled this subject. Semiconductors, MXenes, noble metal nanoparticles, and porous nanomaterials have been used in sensor development. With various devices that have the proper functionalization, this chapter briefly introduces the most current developments in heavy metals and dyes sensing. Additionally, the efficient simultaneous identification of binary and multi-mixed samples was studied. The difficulties and the direction of this era’s future are finally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AAS:

Atomic absorption spectroscopy

AFS:

Atomic fluorescence spectroscopy

ASV:

Anodic strip** voltammetry

AuNPs:

Gold nanoparticles

BTS:

Benzothiazole azo dye sensor

CDs:

Carbon dots

CHPMs:

Carboxyl-functionalized hollow polymer microspheres

CME:

Chemically modified electrodes

CNTs:

Carbon nanotubes

COFs:

Covalent organic frameworks

CPs:

Cellulose/PAN composite films

CS:

Chitosan

CV:

Cyclic voltammetry

DBP:

Dibutyl phthalate

Dith:

Dithizone

DOA:

Di-(2-ethylhexyl) adipate

DPV:

Differential pulse voltammetry

ECL:

Electrochemiluminescence

EIS:

Electrochemical impedance spectroscopy

EPA:

Environmental protection agency

ErGO:

Electrochemically reduced graphene oxide

FL:

Fluorescent

GaN:

Gallium nitride

GCE:

Glassy carbon electrode

GQDs:

Graphene quantum dots

HMIs:

Heavy metal ions

ICP-AES:

Inductively coupled plasma atomic emission spectroscopy

ICP-MS:

Inductively coupled plasma mass spectroscopy

ICP-OES:

Inductively coupled plasma optical emission spectroscopy

IC-UV-vis:

Ion chromatography ultraviolet-visible spectroscopy

ISEs:

Ion-selective electrodes

LIBS:

Laser-induced breakdown spectroscopy

LMOFs:

Luminescent metal-organic framework compounds

LOD:

Limit of detection

MG:

Malachite green

MOF:

Metal-organic framework

MWCNT:

Multiwall carbon nanotubes

PAN:

1-(2-Pyridylazo)-2-naphthol

PEG:

Polyethylene glycol

QDs:

Quantum dots

rGO:

Reduced graphene oxide

RhB:

Rhodamine B

RSDs:

Relative standard deviations

SDLSV:

Second-derivative linear sweep voltammograms

SPCE:

Screen-printed carbon electrode

SPR:

Surface plasmon resonance

SSA:

Specific surface area

SWASV:

Square wave anodic strip** voltammetry

SWCNT:

Single-wall carbon nanotubes

SWV:

Square wave voltammetry

TAN:

1-(2-Thiazolylazo)-2-naphthol

TPP:

Tetraphenylporphyrin

WHO:

World Health Organization

XRF:

X-ray fluorescence spectroscopy

References

  1. Khairul Zaman N, Rohani R, Izni Yusoff I, Kamsol MA, Basiron SA, Aina AI (2021) Eco-friendly coagulant versus industrially used coagulants: identification of their coagulation performance, mechanism and optimization in water treatment process. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph18179164

  2. Si A, Zaman K, Yusoff I, Abdullah S, Rozaimah S, Rashid A, Izzati A, Shazwani N, Kasim M, Alicezah N (2022) Assessment of sodium silicofluoride as a fluoride source in drinking water systems. Iran J Chem Chem Eng 41:2022

    Google Scholar 

  3. Hojjati-Najafabadi A, Mansoorianfar M, Liang T, Shahin K, Karimi-Maleh H (2022) A review on magnetic sensors for monitoring of hazardous pollutants in water resources. Sci Total Environ 824:153844

    Article  CAS  PubMed  Google Scholar 

  4. Nigam A, Sharma N, Tripathy S, Kumar M (2021) Development of semiconductor based heavy metal ion sensors for water analysis: a review. Sensors Actuators A Phys 330:112879

    Article  CAS  Google Scholar 

  5. Yan C, Qu Z, Wang J, Cao L, Han Q (2022) Microalgal bioremediation of heavy metal pollution in water: recent advances, challenges, and prospects. Chemosphere 286:131870

    Article  CAS  PubMed  Google Scholar 

  6. Iqbal M, Abbas M, Nisar J, Nazir A, Qamar A (2019) Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: a review. Chem Int 5:1–80

    CAS  Google Scholar 

  7. Ayach A, Said F, Faiz Z et al (2017) Adsorption of methylene blue on bituminous schists from Tarfaya-Boujdour. Chem Int 3(4):343–352

    CAS  Google Scholar 

  8. Kausar A, Zohra ST, Ijaz S, Iqbal M, Iqbal J, Bibi I, Nouren S, El Messaoudi N, Nazir A (2023) Cellulose-based materials and their adsorptive removal efficiency for dyes: a review. Int J Biol Macromol 224:1337–1355

    Article  CAS  PubMed  Google Scholar 

  9. Sharma R (2023) Nanosensors and nanomaterials – solution to treat heavy metal ions. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.03.462

  10. Xu X, Yang S, Wang Y, Qian K (2022) Nanomaterial-based sensors and strategies for heavy metal ion detection. Green Anal Chem 2:100020

    Article  Google Scholar 

  11. Singh J, Yadav P, Pal AK, Mishra V (2020) Water pollutants: origin and status, pp 5–20

    Google Scholar 

  12. Rohani R, Yusoff II, Khairul Zaman N, Mahmood Ali A, Rusli NAB, Tajau R, Basiron SA (2021) Ammonia removal from raw water by using adsorptive membrane filtration process. Sep Purif Technol 270:118757

    Article  CAS  Google Scholar 

  13. Mitra S, Chakraborty AJ, Tareq AM et al (2022) Impact of heavy metals on the environment and human health: novel therapeutic insights to counter the toxicity. J King Saud Univ – Sci 34:101865

    Article  Google Scholar 

  14. Gumpu MB, Sethuraman S, Krishnan UM, Rayappan JBB (2015) A review on detection of heavy metal ions in water – an electrochemical approach. Sensors Actuators B Chem 213:515–533

    Article  CAS  Google Scholar 

  15. Raval NP, Shah PU, Shah NK (2016) Adsorptive removal of nickel (II) ions from aqueous environment: a review. J Environ Manag 179:1–20

    Article  CAS  Google Scholar 

  16. Nigam A, Bhati VS, Bhat TN, Bin DS, Tripathy S, Kumar M (2019) Sensitive and selective detection of Pb2+ ions using 2,5-dimercapto-1,3,4-thiadiazole functionalized AlGaN/GaN high electron mobility transistor. IEEE Electron Device Lett 40:1976–1979

    Article  CAS  Google Scholar 

  17. Fawell J (2011) Background document for development of WHO guidelines for drinking-water quality. Cadmium Drink, pp 1–16

    Google Scholar 

  18. Mostafa EM, Amdeha E (2022) Enhanced photocatalytic degradation of malachite green dye by highly stable visible-light-responsive Fe-based tri-composite photocatalysts. Environ Sci Pollut Res 29:69861–69874

    Article  CAS  Google Scholar 

  19. Malato S, Maldonado MI, Fernández-Ibáñez P, Oller I, Polo I, Sánchez-Moreno R (2016) Decontamination and disinfection of water by solar photocatalysis: the pilot plants of the Plataforma Solar de Almeria. Mater Sci Semicond Process 42:15–23

    Article  CAS  Google Scholar 

  20. Poornima Parvathi V, Parimaladevi R, Sathe V, Mahalingam U (2019) Graphene boosted silver nanoparticles as surface enhanced Raman spectroscopic sensors and photocatalysts for removal of standard and industrial dye contaminants. Sensors Actuators B Chem 281:679–688

    Article  Google Scholar 

  21. Malik LA, Bashir A, Qureashi A, Pandith AH (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett 17:1495–1521

    Article  CAS  Google Scholar 

  22. ** Mei C, Ainliah Alang Ahmad S (2021) A review on the determination heavy metals ions using calixarene-based electrochemical sensors. Arab J Chem 14:103303

    Article  CAS  Google Scholar 

  23. Mohanadas D, Rohani R, Sulaiman Y, Bakar SA, Mahmoudi E, Zhang LC (2023) Heavy metal detection in water using MXene and its composites: a review. Mater Today Sustain 22:100411

    Article  Google Scholar 

  24. ** M, Yuan H, Liu B, Peng J, Xu L, Yang D (2020) Review of the distribution and detection methods of heavy metals in the environment. Anal Methods 12:5747–5766

    Article  CAS  PubMed  Google Scholar 

  25. Karami H, Mousavi MF, Yamini Y, Shamsipur M (2004) On-line preconcentration and simultaneous determination of heavy metal ions by inductively coupled plasma-atomic emission spectrometry. Anal Chim Acta 509:89–94

    Article  CAS  Google Scholar 

  26. Shirkhanloo H, Mousavi HZ, Rouhollahi A (2011) Preconcentration and determination of heavy metals in water, sediment and biological samples. J Serbian Chem Soc 76:1583–1595

    Article  CAS  Google Scholar 

  27. Rovina K, Siddiquee S, Shaarani SM (2016) Extraction, analytical and advanced methods for detection of Allura Red AC (E129) in food and beverages products. Front Microbiol 7:183581

    Article  Google Scholar 

  28. Turak F, Ozgur MU (2013) Simultaneous determination of Allura Red and Ponceau 4R in drinks with the use of four derivative spectrophotometric methods and comparison with high-performance liquid chromatography. J AOAC Int 96:1377–1386

    Article  CAS  PubMed  Google Scholar 

  29. Okeke ES, Ezeorba TPC, Okoye CO, Chen Y, Mao G, Feng W, Wu X (2022) Analytical detection methods for azo dyes: a focus on comparative limitations and prospects of bio-sensing and electrochemical nano-detection. J Food Compos Anal 114:104778

    Article  CAS  Google Scholar 

  30. Amais RS, Donati GL, Zezzi Arruda MA (2020) ICP-MS and trace element analysis as tools for better understanding medical conditions. TrAC – Trends Anal Chem 133:116094

    Article  CAS  Google Scholar 

  31. Chen JR, Chen JR, Su CK (2022) Solution Foaming–Treated 3D-Printed monolithic packing for enhanced solid phase extraction of trace metals. Talanta 241:123237

    Google Scholar 

  32. Rudd ND, Wang H, Fuentes-Fernandez EMA, Teat SJ, Chen F, Hall G, Chabal YJ, Li J (2016) Highly efficient luminescent metal-organic framework for the simultaneous detection and removal of heavy metals from water. ACS Appl Mater Interfaces 8:30294–30303

    Article  CAS  PubMed  Google Scholar 

  33. Qin J, Su Z, Mao Y, Liu C, Qi B, Fang G, Wang S (2021) Carboxyl-functionalized hollow polymer microspheres for detection of trace metal elements in complex food matrixes by ICP-MS assisted with solid-phase extraction. Ecotoxicol Environ Saf 208:111729

    Article  CAS  PubMed  Google Scholar 

  34. Cuartero M, Crespo GA (2018) All-solid-state potentiometric sensors: a new wave for in situ aquatic research. Curr Opin Electrochem 10:98–106

    Article  CAS  Google Scholar 

  35. Gaudin V (2019) Receptor-based electrochemical biosensors for the detection of contaminants in food products. Electrochem Biosens 307–365

    Google Scholar 

  36. Sathiyanarayanan S, Natarajan P, Saravanan K, Srinivasan S, Venkatachari G (2006) Corrosion monitoring of steel in concrete by galvanostatic pulse technique. Cem Concr Compos 28:630–637

    Article  CAS  Google Scholar 

  37. Mofokeng TG, Motloung MP, Ama OM, Ray SS (2022) Electrochemical characterization of nanomaterials. Eng Mater:11–24

    Google Scholar 

  38. Westbroek P, Kiekens P (2005) Probes for pH measurement and simultaneous cellulose removal and bleaching of textiles with enzymes. Anal Electrochem Text:73–91

    Google Scholar 

  39. Tang X, Wang PY, Buchter G (2018) Ion-selective electrodes for detection of lead (Ii) in drinking water: a mini-review. Environ – MDPI 5:1–14

    Google Scholar 

  40. Wang X, Kong L, Zhou S, Ma C, Lin W, Sun X, Kirsanov D, Legin A, Wan H, Wang P (2022) Development of QDs-based nanosensors for heavy metal detection: a review on transducer principles and in-situ detection. Talanta 239:122903

    Article  CAS  PubMed  Google Scholar 

  41. Ngoensawat U, Pisuchpen T, Sritana-anant Y, Rodthongkum N, Hoven VP (2022) Conductive electrospun composite fibers based on solid-state polymerized Poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of metal ions. Talanta 241:123253

    Article  CAS  PubMed  Google Scholar 

  42. Pang X, Bai H, Zhao H, Liu Y, Qin F, Han X, Fan W, Shi W (2021) Biothiol-functionalized cuprous oxide sensor for dual-mode sensitive Hg2+ detection. ACS Appl Mater Interfaces 13:46980–46989

    Article  CAS  PubMed  Google Scholar 

  43. Ma L, Zhang X, Ikram M, Ullah M, Wu H, Shi K (2020) Controllable synthesis of an intercalated ZIF-67/EG structure for the detection of ultratrace Cd2+, Cu2+, Hg2+ and Pb2+ ions. Chem Eng J 395:125216

    Article  CAS  Google Scholar 

  44. Hu R, Zhang X, Chi KN, Yang T, Yang YH (2020) Bifunctional MOFs-based ratiometric electrochemical sensor for multiplex heavy metal ions. ACS Appl Mater Interfaces 12:30770–30778

    Article  CAS  PubMed  Google Scholar 

  45. Pan F, Tong C, Wang Z, Han H, Liu P, Pan D, Zhu R (2021) Nanocomposite based on graphene and intercalated covalent organic frameworks with hydrosulphonyl groups for electrochemical determination of heavy metal ions. Microchim Acta 188:1–9

    Article  Google Scholar 

  46. Shao Y, Ying Y, ** J (2020) Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev 49:4405–4465

    Article  CAS  PubMed  Google Scholar 

  47. Abed Almonem KI, El-Ashgar NM, Gahal AA (2022) Applications of potentiometric sensors for the determination of malachite green dye in real samples. Sensors Int 3:100186

    Article  Google Scholar 

  48. Ding R, Fiedoruk-Pogrebniak M, Pokrzywnicka M, Koncki R, Bobacka J, Lisak G (2020) Solid reference electrode integrated with paper-based microfluidics for potentiometric ion sensing. Sensors Actuators B Chem 323:128680

    Article  CAS  Google Scholar 

  49. Joon NK, He N, Wagner M, Cárdenas M, Bobacka J, Lisak G (2017) Influence of phosphate buffer and proteins on the potentiometric response of a polymeric membrane-based solid-contact Pb(II) ion-selective electrode. Electrochim Acta 252:490–497

    Article  CAS  Google Scholar 

  50. Gao W, **e X, Bakker E (2020) Direct potentiometric sensing of anion concentration (not activity). ACS Sensors 5:313–318

    Article  CAS  PubMed  Google Scholar 

  51. Lisak G (2021) Reliable environmental trace heavy metal analysis with potentiometric ion sensors – reality or a distant dream. Environ Pollut 289:117882

    Article  CAS  PubMed  Google Scholar 

  52. Wu X, Huang Q, Mao Y, Wang X, Wang Y, Hu Q, Wang H, Wang X (2019) Sensors for determination of uranium: a review. TrAC – Trends Anal Chem 118:89–111

    Article  CAS  Google Scholar 

  53. Guo H, Zheng Z, Zhang Y, Lin H, Xu Q (2017) Highly selective detection of Pb2+ by a nanoscale Ni-based metal–organic framework fabricated through one-pot hydrothermal reaction. Sensors Actuators B Chem 248:430–436

    Article  CAS  Google Scholar 

  54. Zhang X, An D, Bi Z, Shan W, Zhu B, Zhou L, Yu L, Zhang H, **a S, Qiu M (2022) Ti3C2-MXene@N-doped carbon heterostructure-based electrochemical sensor for simultaneous detection of heavy metals. J Electroanal Chem 911:116239

    Article  CAS  Google Scholar 

  55. Vyas G, Bhatt S, Paul P (2019) Synthesis of calixarene-capped silver nanoparticles for colorimetric and amperometric detection of mercury (HgII, Hg0). ACS Omega 4:3860–3870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barsoukov E, Macdonald JR (eds) (2018) Impedance spectroscopy: theory, experiment, and applications. John Wiley Sons, Inc. https://doi.org/10.1002/9781119381860

    Book  Google Scholar 

  57. Geleta GS (2023) A colorimetric aptasensor based on two dimensional (2D) nanomaterial and gold nanoparticles for detection of toxic heavy metal ions: a review. Food Chem Adv 2:100184

    Article  Google Scholar 

  58. Ali Z, Ullah R, Tuzen M, Ullah S, Rahim A, Saleh TA (2023) Colorimetric sensing of heavy metals on metal doped metal oxide nanocomposites: a review. Trends Environ Anal Chem 37:e00187

    Article  CAS  Google Scholar 

  59. Han F, Huang X, Teye E (2019) Novel prediction of heavy metal residues in fish using a low-cost optical electronic tongue system based on colorimetric sensors array. J Food Process Eng 42:e12983

    Article  CAS  Google Scholar 

  60. Zhang M, Zhang L, Tian H, Lu A (2020) Universal preparation of cellulose-based colorimetric sensor for heavy metal ion detection. Carbohydr Polym 236:116037

    Article  CAS  PubMed  Google Scholar 

  61. Samuel VR, Rao KJ (2023) A rapid colorimetric dual sensor for the detection of mercury and lead ions in water using cysteine capped silver nanoparticles. Chem Phys Impact 6:100161

    Article  Google Scholar 

  62. Kaur B, Kaur N, Kumar S (2018) Colorimetric metal ion sensors – a comprehensive review of the years 2011–2016. Coord Chem Rev 358:13–69

    Article  CAS  Google Scholar 

  63. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iftikhar R, Parveen I, Ayesha MA, Iqbal MS, Kamal GM, Hafeez F, Pang AL, Ahmadipour M (2023) Small organic molecules as fluorescent sensors for the detection of highly toxic heavy metal cations in portable water. J Environ Chem Eng 11:109030

    Article  CAS  Google Scholar 

  65. Li P, Li SFY (2021) Recent advances in fluorescence probes based on carbon dots for sensing and speciation of heavy metals. Nano 10:877–908

    CAS  Google Scholar 

  66. Rasheed T, Bilal M, Nabeel F, Iqbal HMN, Li C, Zhou Y (2018) Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Sci Total Environ 615:476–485

    Article  CAS  PubMed  Google Scholar 

  67. Wang Q, Liu Y, Wang X, Wang F, Zhang L, Ge S, Yu J (2021) Ternary electrochemiluminescence biosensor based on DNA walkers and AuPd nanomaterials as a coreaction accelerator for the detection of miRNA-141. ACS Appl Mater Interfaces 13:25783–25791

    Article  CAS  PubMed  Google Scholar 

  68. Ma X, Gao W, Du F, Yuan F, Yu J, Guan Y, Sojic N, Xu G (2021) Rational design of electrochemiluminescent devices. Acc Chem Res 54:2936–2945

    Article  CAS  PubMed  Google Scholar 

  69. Bouffier L, Arbault S, Kuhn A, Sojic N (2016) Generation of electrochemiluminescence at bipolar electrodes: concepts and applications. Anal Bioanal Chem 408:7003–7011

    Article  CAS  PubMed  Google Scholar 

  70. Shen Y, Gao X, Lu HJ, Nie C, Wang J (2023) Electrochemiluminescence-based innovative sensors for monitoring the residual levels of heavy metal ions in environment-related matrices. Coord Chem Rev 476:214927

    Article  CAS  Google Scholar 

  71. Annamalai A, Annamalai K, Ravichandran R, Bharathkumar S, Elumalai S (2022) Multi-functional carbon dots from simple precursors: An excellent heavy metal ions sensor with photocatalytic activity in aqueous environment. Colloids Surfaces A Physicochem Eng Asp 652:129800

    Article  CAS  Google Scholar 

  72. Saleh TA (2020) Nanomaterials: classification, properties, and environmental toxicities. Environ Technol Innov 20:101067

    Article  CAS  Google Scholar 

  73. Elgarahy AM, Elwakeel KZ, Mohammad SH, Elshoubaky GA (2021) A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean Eng Technol 4:100209

    Article  Google Scholar 

  74. Ghorbanian M, Asghari S, Tajbakhsh M (2023) A new benzothiazole azo dye colorimetric chemosensor for detecting Pb2+ ion. Spectrochim Acta – A Mol Biomol Spectrosc 296:122652

    Article  CAS  PubMed  Google Scholar 

  75. Si Y, Liu J, Chen Y, Miao X, Ye F, Liu Z, Li J (2018) rGO/AuNPs/tetraphenylporphyrin nanoconjugate-based electrochemical sensor for highly sensitive detection of cadmium ions. Anal Methods 10:3631–3636

    Article  CAS  Google Scholar 

  76. Zhang L, Li DW, Song W, Shi L, Li Y, Long YT (2010) High sensitive on-site cadmium sensor based on AuNPs amalgam modified screen-printed carbon electrodes. IEEE Sensors J 10:1583–1588

    Article  CAS  Google Scholar 

  77. Jiang QM, Zhang MR, Hou F, Wang ZG, Zhang SH, Chen Y, Luo LQ, Pan GB (2018) In situ bismuth-modified gallium nitride electrode for sensitive determination of cadmium (II) with high repeatability. J Electroanal Chem 809:105–110

    Article  CAS  Google Scholar 

  78. Zhang D, Xu Y, Liu Q, **a Z (2018) Encapsulation of CH3NH3PbBr3 perovskite quantum dots in MOF-5 microcrystals as a stable platform for temperature and aqueous heavy metal ion detection. Inorg Chem 57:4613–4619

    Article  CAS  PubMed  Google Scholar 

  79. Yang Y, Guo Y, **a S, Ma X, Wu X (2022) Metal-organic framework sensors based on triazole carboxylic acid ligands for ion sensing and dye adsorption. J Solid State Chem 311:123113

    Article  CAS  Google Scholar 

  80. Asadi F, Azizi SN, Chaichi MJ (2019) Green synthesis of fluorescent PEG-ZnS QDs encapsulated into Co-MOFs as an effective sensor for ultrasensitive detection of copper ions in tap water. Mater Sci Eng C 105:110058

    Article  CAS  Google Scholar 

  81. Lipskikh OI, Korotkova EI, Khristunova YP, Barek J, Kratochvil B (2018) Sensors for voltammetric determination of food azo dyes – a critical review. Electrochim Acta 260:974–985

    Article  CAS  Google Scholar 

  82. Wang Y, Duncan TV (2017) Nanoscale sensors for assuring the safety of food products. Curr Opin Biotechnol 44:74–86

    Article  CAS  PubMed  Google Scholar 

  83. Wang Q, Qin X, Geng L, Wang Y (2019) Label-free electrochemical aptasensor for sensitive detection of malachite green based on Au nanoparticle/graphene quantum dots/tungsten disulfide nanocomposites. Nano 9:229

    CAS  Google Scholar 

  84. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  PubMed  Google Scholar 

  85. Hou J, Bei F, Wang M, Ai S (2013) Electrochemical determination of malachite green at graphene quantum dots-gold nanoparticles multilayers-modified glassy carbon electrode. J Appl Electrochem 43:689–696

    Article  CAS  Google Scholar 

  86. Wang J, Yang B, Wang H, Yang P, Du Y (2015) Highly sensitive electrochemical determination of Sunset Yellow based on gold nanoparticles/graphene electrode. Anal Chim Acta 893:41–48

    Article  CAS  PubMed  Google Scholar 

  87. Jampasa S, Siangproh W, Duangmal K, Chailapakul O (2016) Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages. Talanta 160:113–124

    Article  CAS  PubMed  Google Scholar 

  88. He Q, Liu J, Liu X, **a Y, Li G, Deng P, Chen D (2018) Novel electrochemical sensors based on cuprous oxide-electrochemically reduced graphene oxide nanocomposites modified electrode toward sensitive detection of sunset yellow. Molecules 23:2130

    Article  PubMed  PubMed Central  Google Scholar 

  89. Karimi-Maleh H, Beitollahi H, Senthil Kumar P et al (2022) Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection. Food Chem Toxicol 164:112961

    Article  CAS  PubMed  Google Scholar 

  90. He JL, Kou W, Li C, Cai JJ, Kong FY, Wang W (2015) Electrochemical sensor based on single-walled carbon nanotube-TiN nannocomposites for detecting Amaranth. Int J Electrochem Sci 10:10074–10082

    Article  CAS  Google Scholar 

  91. Kobun R, Siddiquee S, Shaarani MS (2015) Rapid detection of allura red (E129) based on chitosan/nanoparticles/MWCNTs modified gold electrode in food products. Trans Sci Technol 2:56–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enas Amdeha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Amdeha, E. (2024). Sensors for Heavy Metals and Dyes Detection for Water Analysis. In: Ali, G.A.M., Chong, K.F., Makhlouf, A.S.H. (eds) Handbook of Nanosensors. Springer, Cham. https://doi.org/10.1007/978-3-031-47180-3_64

Download citation

Publish with us

Policies and ethics

Navigation