Nanomaterials for Electrochemical Sensing of Heavy Metals in Wastewater Streams

  • Reference work entry
  • First Online:
Handbook of Nanosensors

Abstract

Heavy metals are considered one of the many challenges facing the wastewater treatment industry. One of the main technologies required to face such a challenge is the fast, cost-effective, selective, and sensitive detection of such heavy metals. Recently, functionalized nanomaterials have emerged as promising electrode materials for the reliable electrochemical sensing of heavy metals in wastewater effluents. This chapter will focus on reviewing the recent reports related to the electrochemical detection of heavy metals using cost-effective nonprecious metal-based nanomaterials. Such nanomaterials include metals, metal oxides, layered double hydroxides, and carbonaceous, polymeric, and metal-organic frameworks. Moreover, special focus is provided for studies related to the disposable and portable applications of electrochemical methods. Numerous types of nanomaterials can be identified as promising candidates for the electrochemical detection of heavy metals below the limit required by the World Health Organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BDC:

1,4-Benzenedicarboxylic acid

BET:

Brunauer, Emmett, and Teller

CBEs:

Carbon-based electrodes

COF:

Covalent organic framework

CPEs:

Carbon paste electrodes

CV:

Cyclic voltammetry

DPV:

Differential pulse voltammetry

EIS:

Electrochemical impedance spectroscopy

FTO:

Fluorine-doped tin oxide

GCEs:

Glassy carbon electrodes

GrEs:

Graphite electrodes

ITO:

Indium tin oxide

LSV:

Linear sweep voltammetry

MIP:

Molecularly imprinted polymer

MOF:

Metal-organic framework

MWCNTs:

Multiwalled carbon nanotubes

NG:

Nitrogen-doped graphene

PET:

Polyethylene terephthalate

RTIL:

Room temperature ionic liquid

SPCEs:

Screen-printed carbon electrodes

SVM:

Strip** voltammetry method

SWASV:

Square wave anodic strip** voltammetry

TMC4R:

Tetra(4-mercaptopyridine)calix[4]resorcinarene

ZIF:

Zeolitic imidazolate framework

References

  1. Wang C, Li W, Guo M, Ji J (2017) Ecological risk assessment on heavy metals in soils: use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy. Sci Rep 7(1):1–11

    PubMed  PubMed Central  Google Scholar 

  2. Sulaiman FR, Hamzah HA (2018) Heavy metals accumulation in suburban roadside plants of a tropical area (Jengka, Malaysia). Ecol Process 7(1):1–11

    Article  Google Scholar 

  3. Aragay G, Merkoçi A (2012) Nanomaterials application in electrochemical detection of heavy metals. Electrochim Acta 84:49–61

    Article  CAS  Google Scholar 

  4. Qian WU, Hong-Mei BI, **ao-Jun HAN (2021) Research progress of electrochemical detection of heavy metal ions. Chin J Anal Chem 49(3):330–340

    Article  Google Scholar 

  5. Abrham F, Gholap AV (2021) Analysis of heavy metal concentration in some vegetables using atomic absorption spectroscopy. Pollution 7(1):205–216

    CAS  Google Scholar 

  6. Surucu O (2022) Electrochemical removal and simultaneous sensing of mercury with inductively coupled plasma-mass spectrometry from drinking water. Mater Today Chem 23:100639–100639

    Article  CAS  Google Scholar 

  7. Sethi S, Singh G, Sharma R, Kaith BS, Sharma N, Khullar S (2022) Fluorescent hydrogel of chitosan and gelatin cross linked with maleic acid for optical detection of heavy metals. J Appl Polym Sci 139(15):51941–51941

    Article  CAS  Google Scholar 

  8. Ullah N, Mansha M, Khan I, Qurashi A (2018) Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: recent advances and challenges. TrAC Trends Anal Chem 100:155–166

    Article  CAS  Google Scholar 

  9. Liu X, Yao Y, Ying Y, ** J (2019) Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. TrAC Trends Anal Chem 115:187–202

    Article  CAS  Google Scholar 

  10. Kempahanumakkagari S, Deep A, Kim K-H, Kailasa SK, Yoon H-O (2017) Nanomaterial-based electrochemical sensors for arsenic – a review. Biosens Bioelectron 95:106–116

    Article  CAS  PubMed  Google Scholar 

  11. Isildak Ö, Özbek O (2021) Application of potentiometric sensors in real samples. Crit Rev Anal Chem 51(3):218–231

    Article  CAS  PubMed  Google Scholar 

  12. Shawish HMA, Saadeh SM, Al-kahlout ST (2022) PVC membrane, coated-wire, and carbon-paste electrodes for potentiometric determination of vardenafil hydrochloride in tablet formulations and urine samples. Sens Int 3:100175–100175

    Article  Google Scholar 

  13. Saadeh SM, Shawish HMA, Foul MYA (2022) Lowering detection limits of copper (II)-selective carbon paste electrodes using an SNO-and an SNNS-Schiff base ligands. Sens Int 3:100151–100151

    Article  Google Scholar 

  14. Bouhoun ML, Blondeau P, Louafi Y, Andrade FJ (2021) A paper-based potentiometric platform for determination of water hardness. Chemosensors 9(5):96–96

    Article  CAS  Google Scholar 

  15. Ding R, Fiedoruk-Pogrebniak M, Pokrzywnicka M, Koncki R, Bobacka J, Lisak G (2020) Solid reference electrode integrated with paper-based microfluidics for potentiometric ion sensing. Sensors Actuators B Chem 323:128680–128680

    Article  CAS  Google Scholar 

  16. Islam MA, Mahbub P, Nesterenko PN, Paull B, Macka M (2019) Prospects of pulsed amperometric detection in flow-based analytical systems – a review. Anal Chim Acta 1052:10–26

    Article  CAS  PubMed  Google Scholar 

  17. Arduini F, Majorani C, Amine A, Moscone D, Palleschi G (2011) Hg2+ detection by measuring thiol groups with a highly sensitive screen-printed electrode modified with a nanostructured carbon black film. Electrochim Acta 56(11):4209–4215

    Google Scholar 

  18. Scholz F (2015) Voltammetric techniques of analysis: the essentials. ChemTexts 1(4):1–24

    Article  CAS  Google Scholar 

  19. Farghaly OA, Hameed RA, Abu-Nawwas A-AH (2014) Analytical application using modern electrochemical techniques. Int J Electrochem Sci 9(1):3287–3318

    Article  Google Scholar 

  20. Wilke S, Wang H, Muraczewska M, Müller H (1996) Amperometric detection of heavy metal ions in ion pair chromatography at an array of water/nitrobenzene micro interfaces. Fresenius J Anal Chem 356(3–4):233–236

    Article  CAS  Google Scholar 

  21. Vorotyntsev MA, Volgin VM, Davydov AD (2022) Halate electroreduction from acidic solution at rotating disk electrode: theoretical study of the steady-state convective-migration-diffusion transport for comparable concentrations of Halate ions and protons. Electrochim Acta 409:139961–139961

    Article  CAS  Google Scholar 

  22. Pasti IA, Gavrilov NM, Mentus SV (2014) Voltammetric techniques in electroanalytic studies. In: Voltammetry theory, types and applications, pp 1–41, Nova Science Publishers, New York. https://www.google.com.eg/books/edition/Voltammetry/Sn8mnwEACAAJ?hl=en

  23. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95(2):197–206

    Article  CAS  Google Scholar 

  24. Laborda E, Molina A, Martínez-Ortiz F, Compton RG (2012) Electrode modification using porous layers. Maximising the analytical response by choosing the most suitable voltammetry: differential pulse vs. square wave vs. linear sweep voltammetry. Electrochim Acta 73:3–9

    Article  CAS  Google Scholar 

  25. Alghamdi AH (2010) Applications of strip** voltammetric techniques in food analysis. Arab J Chem 3(1):1–7

    Article  CAS  Google Scholar 

  26. Barón-Jaimez J, Joya MR, Barba-Ortega J (2013) Anodic strip** voltammetry – ASV for determination of heavy metals. IOP Publishing. https://iopscience.iop.org/article/10.1088/1742-6596/466/1/012023/meta

  27. Dimovasilis PA, Prodromidis MI (2016) Preparation of screen-printed compatible bismuth-modified sol-gel microspheres: application to the strip** voltammetric determination of lead and cadmium. Anal Lett 49(7):979–989

    Article  CAS  Google Scholar 

  28. Finšgar M, Petovar B, Vodopivec K (2019) Bismuth-tin-film electrodes for Zn(II), Cd(II), and Pb(II) trace analysis. Microchem J 145:676–685

    Article  Google Scholar 

  29. Oliveira VHB, Rechotnek F, da Silva EP, de Sousa MV, Rubira AF, Silva R, Lourenco SA, Muniz EC (2020) A sensitive electrochemical sensor for Pb2+ ions based on ZnO nanofibers functionalized by L-cysteine. J Mol Liq 309:113041–113041

    Google Scholar 

  30. Ganzoury MA, Ghasemian S, Zhang N, Yagar M, De Lannoy C-F (2022) Mixed metal oxide anodes used for the electrochemical degradation of a real mixed industrial wastewater. Chemosphere 286:131600–131600

    Article  CAS  PubMed  Google Scholar 

  31. Nourbakhsh A, Rahimnejad M, Asghary M, Younesi H (2022) Simultaneous electro-determination of trace copper, lead, and cadmium in tap water by using silver nanoparticles and graphene nanoplates as nanocomposite modified graphite electrode. Microchem J 175:107137–107137

    Article  CAS  Google Scholar 

  32. Hadidi M, Ahour F, Keshipour S (2022) Electrochemical determination of trace amounts of lead ions using D-penicillamine-functionalized graphene quantum dot-modified glassy carbon electrode. J Iran Chem Soc 19(4):1179–1189

    Article  CAS  Google Scholar 

  33. Dönmez KB, Çetinkaya E, Deveci S, Karadağ S, Şahin Y, Doğu M (2017) Preparation of electrochemically treated nanoporous pencil-graphite electrodes for the simultaneous determination of Pb and Cd in water samples. Anal Bioanal Chem 409(20):4827–4837

    Article  PubMed  Google Scholar 

  34. Le Hai T, Hung LC, Phuong TTB, Ha BTT, Nguyen B-S, Hai TD, Nguyen V-H (2020) Multiwall carbon nanotube modified by antimony oxide (Sb2O3/MWCNTs) paste electrode for the simultaneous electrochemical detection of cadmium and lead ions. Microchem J 153:104456–104456

    Google Scholar 

  35. Pejcic B, De Marco R (2006) Impedance spectroscopy: over 35 years of electrochemical sensor optimization. Electrochim Acta 51(28):6217–6229

    Article  CAS  Google Scholar 

  36. K’Owino IO, Sadik OA (2005) Impedance spectroscopy: a powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanalysis 17(23):2101–2113

    Article  Google Scholar 

  37. El-Azazy M, Dimassi SN, El-Shafie AS, Issa AA (2019) Bio-waste Aloe vera leaves as an efficient adsorbent for titan yellow from wastewater: structuring of a novel adsorbent using Plackett-Burman factorial design. Appl Sci 9(22):4856–4856

    Article  CAS  Google Scholar 

  38. Misra M, Ghosh Sachan S (2022) Nanobioremediation of heavy metals: perspectives and challenges. J Basic Microbiol 62(3–4):428–443

    Google Scholar 

  39. Zamora-Gálvez A, Ait-Lahcen A, Mercante LA, Morales-Narváez E, Amine A, Merkoçi A (2016) Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection. Anal Chem 88(7):3578–3584

    Article  PubMed  Google Scholar 

  40. Avuthu SGR, Narakathu BB, Eshkeiti A, Emamian S, Bazuin BJ, Joyce M, Atashbar MZ (2014) Detection of heavy metals using fully printed three electrode electrochemical sensor. IEEE. https://ieeexplore.ieee.org/abstract/document/6985087

  41. Jiang D, Du X, Liu Q, Zhou L, Dai L, Qian J, Wang K (2015) Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay. Analyst 140(18):6404–6411

    Article  CAS  PubMed  Google Scholar 

  42. Buledi JA, Amin S, Haider SI, Bhanger MI, Solangi AR (2021) A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environ Sci Pollut Res 28(42):58994–59002

    Article  Google Scholar 

  43. Liaquat H, Imran M, Latif S, Hussain N, Bilal M (2022) Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants. Environ Res 214:113795–113795

    Article  CAS  PubMed  Google Scholar 

  44. Murthy HCA, Ayanie GT, Desalegn T, Ghotekar S, Muniswamy D (2022) Role of nanocatalyst in electrochemical sensing of heavy metal ions. In: Advanced nanocatalysis for organic synthesis and electroanalysis, (pp 222–236) Bentham Science Publishers, Netherlands. https://www.google.com.eg/books/edition/Advanced_Nanocatalysis_for_Organic_Synth/I4hsEAAAQBAJ?hl=en&gbpv=0

  45. Numan A, Gill AAS, Rafique S, Guduri M, Zhan Y, Maddiboyina B, Li L, Singh S, Dang NN (2021) Rationally engineered nanosensors: a novel strategy for the detection of heavy metal ions in the environment. J Hazard Mater 409:124493–124493

    Article  CAS  PubMed  Google Scholar 

  46. Aguilera ÁY, Krepper G, Di Nezio MS (2022) Simple one-step synthesis of bismuth nanoparticles for voltammetric sensing of metal ions. J Clust Sci 33(4):1417–1426

    Article  CAS  Google Scholar 

  47. Buledi JA, Shah Z-u-H, Mallah A, Solangi AR (2022) Current perspective and developments in electrochemical sensors modified with nanomaterials for environmental and pharmaceutical analysis. Curr Anal Chem 18(1):102–115

    Article  CAS  Google Scholar 

  48. Naseri M, Mohammadniaei M, Ghosh K, Sarkar S, Sankar R, Mukherjee S, Pal S, Ansari Dezfouli E, Halder A, Qiao J (2022) A robust electrochemical sensor based on butterfly shaped silver nanostructure for concurrent quantification of heavy metals in water samples. Electroanalysis

    Google Scholar 

  49. Sadegh H, Ali GAM, Makhlouf ASH, Chong KF, Alharbi NS, Agarwal S, Gupta VK (2018) MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J Mol Liq 258:345–353

    Article  CAS  Google Scholar 

  50. Waheed A, Mansha M, Ullah N (2018) Nanomaterials-based electrochemical detection of heavy metals in water: current status, challenges and future direction. TrAC Trends Anal Chem 105:37–51

    Article  CAS  Google Scholar 

  51. Ama OM, Ray SS, Osifo PO (2022) Modified nanomaterials for environmental applications. Springer

    Book  Google Scholar 

  52. Li SS, Zhou WY, Jiang M, Li LN, Sun YF, Guo Z, Liu JH, Huang XJ (2018) Insights into diverse performance for the electroanalysis of Pb(II) on Fe2O3 nanorods and hollow nanocubes: Toward analysis of adsorption sites. Electrochimica Acta 288:42–51

    Article  CAS  Google Scholar 

  53. Sun Y, Zhang W, Yu H, Hou C, Li DS, Zhang Y, Liu Y (2015) Controlled synthesis various shapes Fe3O4 decorated reduced graphene oxide applied in the electrochemical detection. J Alloys Compd 638:182–187

    Article  CAS  Google Scholar 

  54. Song Q, Li M, Huang L, Wu Q, Zhou Y, Wang Y (2013) Bifunctional polydopamine@Fe3O4 core-shell nanoparticles for electrochemical determination of lead(II) and cadmium(II). Analytica Chimica Acta 787(ii):64–70

    Article  CAS  PubMed  Google Scholar 

  55. Zhou SF, Han XJ, Fan HL, Zhang QX, Liu YQ (2015) Electrochemical detection of As(III) through mesoporous MnFe2O4 nanocrystal clusters by square wave strip** voltammetry. Electrochimica Acta 174(III):1160–1166

    Google Scholar 

  56. Zhou SF, Han XJ, Fan HL, Huang J, Liu YQ (2018) Enhanced electrochemical performance for sensing Pb(II) based on graphene oxide incorporated mesoporous MnFe2O4 nanocomposites. J Alloys Compd 747:447–454

    Article  CAS  Google Scholar 

  57. Gao C, Yu XY, **ong SQ, Liu JH, Huang XJ (2013) Electrochemical detection of arsenic(III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold. Anal Chem 85(5):2673–2680

    Article  CAS  PubMed  Google Scholar 

  58. Salimi A, Mamkhezri H, Hallaj R, Soltanian S (2008) Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles. Sensors Actuators B Chem 129(1):246–254

    Article  CAS  Google Scholar 

  59. Hao S, Li J, Li Y, Zhang Y, Hu G (2016) Facile synthesis of a 3D MnO2 nanowire/Ni foam electrode for the electrochemical detection of Cu(II). Anal Methods 8(24):4919–4925

    Article  CAS  Google Scholar 

  60. Alias N, Rosli SA, Sazalli NAH, Hamid HA, Arivalakan S, Umar SNH, Khim BK, Taib BN, Keat YK, Razak KA, Yee YF, Hussain Z, Bakar EA, Kamaruddin NF, Manaf AA, Uchiyama N, Kian TW, Matsuda A, Kawamura G, Sawada K, Matsumoto A, Lockman Z (2020) Metal oxide for heavy metal detection and removal. Elsevier, pp 299–332

    Google Scholar 

  61. Sawan S, Maalouf R, Errachid A, Jaffrezic-Renault N (2020) Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals: a review. TrAC Trends Anal Chem 131:116014–116014

    Article  CAS  Google Scholar 

  62. El-Fatah GA, Magar HS, Hassan RYA, Mahmoud R, Farghali AA, Hassouna MEM (2022) A novel gallium oxide nanoparticles-based sensor for the simultaneous electrochemical detection of Pb2+, Cd2+ and Hg2+ ions in real water samples. Sci Rep 12(1):1–14

    Article  Google Scholar 

  63. Mahmoud R, Safwat N, Fathy M, Mohamed NA, El-Dek S, El-Banna HA, Farghali A, Abo El-Ela FI (2022) Novel anti-inflammatory and wound healing controlled released LDH-curcumin nanocomposite via intramuscular implantation, in-vivo study. Arab J Chem 15(3):103646–103646

    Article  CAS  Google Scholar 

  64. Liu W, Liu Y, Yuan Z, and Lu C (2023) Recent advances in the detection and removal of heavy metal ions using functionalized layered double hydroxides: a review.. Industrial Chemistry & Materials

    Book  Google Scholar 

  65. Lee SP, Ali GAM, Algarni H, Chong KF (2019) Flake size-dependent adsorption of graphene oxide aerogel. J Mol Liq 277:175–180

    Article  CAS  Google Scholar 

  66. AbdelGhany GS, Esmail EE, MHF M, AGA M, Nabila S (2021) Eco-friendly activated carbon developed from rice hulls for chromium and iron ion removal. J Environ Eng Sci 0(0):1–14

    CAS  Google Scholar 

  67. Song H, Huo M, Zhou M, Chang H, Li J, Zhang Q, Fang Y, Wang H, Zhang D (2022) Carbon nanomaterials-based electrochemical sensors for heavy metal detection. Crit Rev Anal Chem:1–20. https://www.tandfonline.com/doi/abs/10.1080/10408347.2022.2151832

  68. Bilge S, Karadurmus L, Sınağ A, Ozkan SA (2021) Green synthesis and characterization of carbon-based materials for sensitive detection of heavy metal ions. TrAC Trends Anal Chem 145:116473–116473

    Article  CAS  Google Scholar 

  69. Rani UA, Ng LY, Ng CY, Mahmoudi E (2020) A review of carbon quantum dots and their applications in wastewater treatment. Adv Colloid Interf Sci 278:102124–102124

    Article  Google Scholar 

  70. Zhang Z, Cai Z, Wang Z, Peng Y, **a L, Ma S, Yin Z, Huang Y (2021) A review on metal–organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Letters 13(1):1–29

    Article  Google Scholar 

  71. Adil HI, Thalji MR, Yasin SA, Saeed IA, Assiri MA, Chong KF, Ali GAM (2022) Metal–organic frameworks (MOFs) based nanofiber architectures for the removal of heavy metal ions. RSC Adv 12(3):1433–1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shayegan H, Ali GAM, Safarifard V (2020) Recent Progress in the removal of heavy metal ions from water using metal-organic frameworks. ChemistrySelect 5(1):124–146

    Article  CAS  Google Scholar 

  73. Shayegan H, Ali GAM, Safarifard V (2020) Amide-functionalized metal–organic framework for high efficiency and fast removal of Pb(II) from aqueous solution. J Inorg Organomet Polym Mater 30:3170–3178

    Article  CAS  Google Scholar 

  74. Salehi Rozveh Z, Kazemi S, Karimi M, Ali GAM, Safarifard V (2020) Effect of functionalization of metal-organic frameworks on anion sensing. Polyhedron (183):114514

    Google Scholar 

  75. Kajal N, Singh V, Gupta R, Gautam S (2022) Metal organic frameworks for electrochemical sensor applications: a review. Environ Res 204:112320–112320

    Article  CAS  PubMed  Google Scholar 

  76. Shamim MA, Zia H, Zeeshan M, Khan MY, Shahid M (2022) Metal organic frameworks (MOFs) as a cutting-edge tool for the selective detection and rapid removal of heavy metal ions from water: recent progress. J Environ Chem Eng 10(1):106991–106991

    Article  CAS  Google Scholar 

  77. Garg N, Deep A, Sharma AL (2022) Recent trends and advances in porous metal-organic framework nanostructures for the electrochemical and optical sensing of heavy metals in water. Crit Rev Anal Chem:1–25. https://www.tandfonline.com/doi/abs/10.1080/10408347.2022.2106543

  78. Tajik S, Beitollahi H, Garkani Nejad F, Sheikhshoaie I, Nugraha AS, Jang HW, Yamauchi Y, Shokouhimehr M (2021) Performance of metal–organic frameworks in the electrochemical sensing of environmental pollutants. J Mater Chem A 9(13):8195–8220

    Article  CAS  Google Scholar 

  79. Lavanya J, Srinivasan R, Sankar AR, Varsha MV, Gomathi N (2022) Review-metal-organic frameworks composites for electrochemical detection of heavy metal ions in aqueous medium. J Electrochem Soc 169(4):047525–047525

    Article  CAS  Google Scholar 

  80. Devaraj M, Sasikumar Y, Rajendran S, Ponce LC (2021) Review-metal organic framework based nanomaterials for electrochemical sensing of toxic heavy metal ions: Progress and their prospects. J Electrochem Soc 168(3):037513–037513

    Article  CAS  Google Scholar 

  81. Wang F-F, Liu C, Yang J, Xu H-L, Pei W-Y, Ma J-F (2022) A sulfur-containing capsule-based metal-organic electrochemical sensor for super-sensitive capture and detection of multiple heavy-metal ions. Chem Eng J 438:135639–135639

    Article  CAS  Google Scholar 

  82. Theerthagiri S, Rajkannu P, Senthil Kumar P, Peethambaram P, Ayyavu C, Rasu R, Kannaiyan D (2022) Electrochemical sensing of copper (II) ion in water using bi-metal oxide framework modified glassy carbon electrode. Food Chem Toxicol 167:113313–113313

    Article  CAS  PubMed  Google Scholar 

  83. Huang R, Zhang K, Sun H, Zhang D, Zhu J, Zhou S, Li W, Li Y, Wang C, Jia X, Wågberg T, Hu G (2022) Star-shaped porous nitrogen-doped metal-organic framework carbon as an electrochemical platform for sensitive determination of Cd(II) in environmental and tobacco samples. Anal Chim Acta 1228:340309–340309

    Article  CAS  PubMed  Google Scholar 

  84. Yin H, He H, Li T, Hu M, Huang W, Wang Z, Yang X, Yao W, **ao F, Wu Y, Sun Y (2023) Ultra-sensitive detection of multiplexed heavy metal ions by MOF-derived carbon film encapsulating BiCu alloy nanoparticles in potable electrochemical sensing system. Anal Chim Acta 1239:340730–340730

    Article  CAS  PubMed  Google Scholar 

  85. Ding S-Y, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42(2):548–568

    Article  CAS  PubMed  Google Scholar 

  86. She P, Qin Y, Wang X, Zhang Q (2022) Recent progress in external stimulus responsive 2D covalent organic frameworks. Adv Mater 34(22):2101175–2101175

    Article  CAS  Google Scholar 

  87. Yin J, Zhai H, Wang Y, Wang B, Chu G, Guo Q, Zhang Y, Sun X, Guo Y, Zhang Y (2022) COF/MWCNTs/CLS-based electrochemical sensor for simultaneous and sensitive detection of multiple heavy metal ions. Food Anal Methods 15(12):3244–3256

    Article  Google Scholar 

  88. Lo M, Ktari N, Gningue-Sall D, Madani A, Aaron SE, Aaron J-J, Mekhalif Z, Delhalle J, Chehimi MM (2020) Polypyrrole: a reactive and functional conductive polymer for the selective electrochemical detection of heavy metals in water. Emerg Mater 3(6):815–839

    Article  CAS  Google Scholar 

  89. Singh VK, Kushwaha CS, Shukla SK (2023) Polymer nanocomposite for detection of heavy metal ions, (pp 261–281). Jenny Stanford Publishing, Singapore

    Google Scholar 

  90. Wu X, Ma P, Sun Y, Du F, Song D, Xu G (2021) Application of MXene in electrochemical sensors: a review. Electroanalysis 33(8):1827–1851

    Article  CAS  Google Scholar 

  91. Sarma M (2022) Recent advances on electrochemical sensors for detection and analysis of heavy metals. Voltammetry for Sensing Applications 1:177

    Article  Google Scholar 

  92. Pandikumar A, Devi KSS (2021) Disposable electrochemical sensors for healthcare monitoring: material properties and design, (vol 21). Royal Society of Chemistry, United Kingdom

    Google Scholar 

  93. Yamanaka K, Vestergaard MC, Tamiya E (2016) Printable electrochemical biosensors: a focus on screen-printed electrodes and their application. Sensors (Switzerland) 16(10):1761–1761

    Article  Google Scholar 

  94. Mohamad Nor N, Ramli NH, Poobalan H, Qi Tan K, Abdul Razak K (2021) Recent advancement in disposable electrode modified with nanomaterials for electrochemical heavy metal sensors. Critical reviews in analytical chemistry:1–36. https://www.tandfonline.com/doi/abs/10.1080/10408347.2021.1950521

  95. Umapathi R, Ghoreishian SM, Sonwal S, Rani GM, Huh YS (2022) Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord Chem Rev 453:214305–214305

    Article  CAS  Google Scholar 

  96. Cui W, Ren Z, Song Y, Ren CL (2022) Development and potential for point-of-care heavy metal sensing using microfluidic systems: a brief review. Sensors and Actuators A: Physical:(344) 113733–113733

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehab Mahmoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mahmoud, R. et al. (2024). Nanomaterials for Electrochemical Sensing of Heavy Metals in Wastewater Streams. In: Ali, G.A.M., Chong, K.F., Makhlouf, A.S.H. (eds) Handbook of Nanosensors. Springer, Cham. https://doi.org/10.1007/978-3-031-47180-3_48

Download citation

Publish with us

Policies and ethics

Navigation