Advanced Optical Nanosensors

  • Reference work entry
  • First Online:
Handbook of Nanosensors

Abstract

Advanced optical nanosensors are sensors that convert the detectable interaction changes between molecules with analytes into analytically useful information based on light intensity. The radiation-sample interaction is measured for changes in certain optical properties in correlation with the analyte concentration. Also, a variety of optical principles can be applied to optical sensors (absorbance, reflection, luminescence, fluorescence), covering different regions of the spectrum (UV, visible, near-infrared (NIR)). This allows light intensity measurements plus other properties such as lifetime, refractive index, scattering, diffraction, and polarization. Additionally, the user often expects additional sensor characteristics, for instance, a sufficiently high signal-to-noise ratio, quick response time, low detection limit, high sensitivity, low cost, and the possibility of online and in-situ applications. This chapter aims to provide details of the principle and mechanism of specific optical nanosensors (viz., luminescent, surface plasmon resonance (SPR), and quantum dots), the preparation of certain advanced nanosensors (viz., nano-cellulose, silver nanoparticles, and carbon-based), and their current bionanotechnological applications. Optical nanosensors are an emerging technique for personalized health monitoring and could revolutionize how diseases are diagnosed and treated in the future. The use of optical nanosensors in environmental monitoring and food quality analysis is also prominent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AKD:

Alkyl Ketene Dimer

AMX:

Amoxicillin Antibiotics

Au/AgNPs:

Gold/Silver Nanoparticles

BPEI:

Branched-Polyethylenimine

BPT:

Benzo[α]pyrene Tetrol

CD:

Carbon Dot

CEF:

Chelation-Enhanced Fluorescence

CEQ:

Chelation-Enhanced Quenching

CFP:

Cyan Fluorescent Protein

CL/FL/PL:

Chemiluminescence/Fluorescence/Photoluminescence

CNF:

Cellulose Nanofibers

CPW:

Coplanar Waveguide

CQDs/GQDs:

Carbon Quantum Dots/Graphene Quantum Dots

CRP:

C-reactive Protein

DFT:

Density Functional Theory

DNA/RNA:

Deoxyribonucleic acid/Ribonucleic acid

FAR:

Fused Aromatic Ring

FMNP:

Fluorescent Magnetic Nanoprobes

FRET:

Fluorescence Resonance Energy Transfer

GO:

Graphene Oxide

HEC:

Hydroxyethyl Cellulose

HOMO:

Highest Occupied Molecular Orbital

HPLC:

High-Performance Liquid Chromatography

HPMC:

Hydroxypropyl Methylcellulose

IFE:

Internal Filtering Effect

LOD:

Limit of Detection

LSPR:

Localized Surface Plasmon Resonance

LUMO:

Lowest Unoccupied Molecular Orbital

MB:

Molecular Beacon

MC:

Methyl Cellulose

MG:

Malachite Green

mRNAs:

Messenger Ribonucleic Acid

MSCs:

Mesenchymal Stem Cells

NCDs:

Amino-functionalized Carbon Dots

NIR:

Near Infrared

NR:

Neutral Red

PFMS:

Pyrene Functionalized Mesoporous Silica

Ppb:

Part Per Billion

QCM:

Quartz Crystal Microbalance

QY/PLQY:

Quantum Yield/Photoluminescence Quantum Yield

RF:

Radiofrequency

SERS:

Surface Enhanced Raman Spectroscopy

SPR:

Surface Plasmon Resonance

ssDNA:

Single-Stranded DNA

TLC:

Thin Layer Chromatography

TMT-AuNPs:

Trithiocyanuric Acid Modified Gold Nanoparticles

UCNP:

Upconversion Nanoparticles

UV:

Ultraviolet

UV-Vis:

Ultraviolet Visible Spectroscopy

VOC:

Volatile Organic Compound

YFP:

Yellow Fluorescent Protein

References

  1. Bell TW, Hext NM (2004) Supramolecular optical chemosensors for organic analytes. Chem Soc Rev 33(9):589–598

    CAS  PubMed  Google Scholar 

  2. Wang B, Anslyn EV (2011) Chemosensors: principles, strategies, and applications, Wiley Hoboken, New Jersey, USA

    Google Scholar 

  3. **ao W, **ao D, **a J, Chen Z (2011) Fluorescent sensing of nitrite at nanomolar level using functionalized mesoporous silica. Microchim Acta 173(1):73–78

    Article  CAS  Google Scholar 

  4. Savastano M, Fiaschi M, Ferraro G, Gratteri P, Mariani P, Bianchi A, Bazzicalupi C (2020) Sensing Zn2+ in aqueous solution with a fluorescent Scorpiand macrocyclic ligand decorated with an anthracene bearing tail. Molecules 25(6):1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Domansky K, Liu J, Wang L-Q, Engelhard MH, Baskaran S (2001) Chemical sensors based on dielectric response of functionalized mesoporous silica films. J Mater Res 16(10):2810–2816

    Article  CAS  Google Scholar 

  6. Yang X, Wang L (2007) Fluorescence pH probe based on microstructured polymer optical fiber. Opt Express 15(25):16478–16483

    Article  CAS  PubMed  Google Scholar 

  7. Melde BJ, Johnson BJ, Charles PT (2008) Mesoporous silicate materials in sensing. Sensors 8(8):5202–5228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schirhagl R, Lieberzeit PA, Dickert FL (2010) Chemosensors for viruses based on artificial immunoglobulin copies. Adv Mater 22(18):2078–2081

    Article  CAS  PubMed  Google Scholar 

  9. Ye F, Tian C, Ma C, Zhang ZF (2022) Fiber optic sensors based on circular and elliptical polymer optical fiber for measuring refractive index of liquids. Opt Fiber Technol 68:102812

    Article  CAS  Google Scholar 

  10. Demchenko AP, Demchenko AP (2020) Fluorescence detection in sensor technologies. Introduction to fluorescence sensing. Mater Dev 1:55–110

    Google Scholar 

  11. Wang X-d, Wolfbeis OS, Meier RJ (2013) Luminescent probes and sensors for temperature. Chem Soc Rev 42(19):7834–7869

    Article  CAS  PubMed  Google Scholar 

  12. Ryu M, Ng SH, Anand V, Lundgaard S, Hu J, Katkus T, Appadoo D, Vilagosh Z, Wood AW, Juodkazis S (2021) Attenuated total reflection at THz wavelengths: prospective use of total internal reflection and polariscopy. Appl Sci 11(16):7632

    Article  CAS  Google Scholar 

  13. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114(8):4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shin Y-H, Gutierrez-Wing MT, Choi J-W (2021) Recent progress in portable fluorescence sensors. J Electrochem Soc 168(1):017502

    Article  CAS  Google Scholar 

  15. Ma Y, Mei J, Bai J, Chen X, Ren L (2018) Ratiometric fluorescent nanosensor based on carbon dots for the detection of mercury ion. Mater Res Exp 5(5):055605

    Article  Google Scholar 

  16. Wang Z, Gao Z, Qiao M, Peng J, Ding L (2022) Pyrene-functionalized mesoporous silica as a fluorescent nanosensor for selective detection of Hg2+ in aqueous solution. Colloids Surf A Physicochem Eng Asp 637:128269

    Article  CAS  Google Scholar 

  17. Eftekhari-Sis B, Rezazadeh Z, Akbari A, Amini M (2018) 8-Hydroxyquinoline functionalized graphene oxide: an efficient fluorescent nanosensor for Zn2+ in aqueous media. J Fluoresc 28(5):1173–1180

    Article  CAS  PubMed  Google Scholar 

  18. Steinegger A, Wolfbeis OS, Borisov SM (2020) Optical sensing and imaging of pH values: spectroscopies, materials, and applications. Chem Rev 120(22):12357–12489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin Z, Hu F, He G, Yang Y, Liao Y, Luo X, Wang X-D (2022) Highly photostable and pH− sensitive nanosensors. Chemosensors 10(9):354

    Article  CAS  Google Scholar 

  20. Moshksayan K, Kashaninejad N, Warkiani ME, Lock JG, Moghadas H, Firoozabadi B, Saidi MS, Nguyen N-T (2018) Spheroids-on-a-chip: recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sensors Actuators B Chem 263:151–176

    Article  CAS  Google Scholar 

  21. Manzoor O, Soleja N, Khan P, Hassan MI, Mohsin M (2019) Visualization of thiamine in living cells using genetically encoded fluorescent nanosensor. Biochem Eng J 146:170–178

    Article  CAS  Google Scholar 

  22. Li Z, Wang M, Jiao Y, Liu A, Wang S, Zhang C, Yang C, Xu Y, Li C, Man B (2018) Different number of silver nanoparticles layers for surface enhanced raman spectroscopy analysis. Sensors Actuators B Chem 255:374–383

    Article  CAS  Google Scholar 

  23. Lee SH, Jun B-H (2019) Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20(4):865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amendola V, Bakr OM, Stellacci F (2010) A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics 5(1):85–97

    Article  CAS  Google Scholar 

  25. Park J-W (2021) Natural circular dichroism in the surface plasmon resonance and interband transition of noble metal nanocrystals induced by surface magnetism. Appl Surf Sci 541:148370

    Article  CAS  Google Scholar 

  26. Elnoby RM, Mourad MH, Elnaby SLH, Abou Kana MT (2018) Monocrystalline solar cells performance coated by silver nanoparticles: effect of NPs sizes from point of view Mie theory. Opt Laser Technol 101:208–215

    Article  CAS  Google Scholar 

  27. Ali A, Said D, Khayyat M, Boustimi M, Seoudi R (2020) Improving the efficiency of the organic solar cell (CuPc/C60) via PEDOT: PSS as a photoconductor layer doped by silver nanoparticles. Results Phys 16:102819

    Google Scholar 

  28. Wang Z, Hu T, Liang R, Wei M (2020) Application of zero-dimensional nanomaterials in biosensing. Front Chem 8:320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li M, Chen T, Gooding JJ, Liu J (2019) Review of carbon and graphene quantum dots for sensing. ACS Sens 4(7):1732–1748

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2(34):6921–6939

    Article  CAS  Google Scholar 

  31. Dong Y, Wang R, Li H, Shao J, Chi Y, Lin X, Chen G (2012) Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon 50(8):2810–2815

    Article  CAS  Google Scholar 

  32. Zhou W, Zhuang J, Li W, Hu C, Lei B, Liu Y (2017) Towards efficient dual-emissive carbon dots through sulfur and nitrogen co-doped. J Mater Chem C 5(32):8014–8021

    Article  CAS  Google Scholar 

  33. Yan X, Li B, Cui X, Wei Q, Tajima K, L-s L (2011) Independent tuning of the band gap and redox potential of graphene quantum dots. J Phys Chem Lett 2(10):1119–1124

    Article  CAS  PubMed  Google Scholar 

  34. Zhu B, Sun S, Wang Y, Deng S, Qian G, Wang M, Hu A (2013) Preparation of carbon nanodots from single chain polymeric nanoparticles and theoretical investigation of the photoluminescence mechanism. J Mater Chem C 1(3):580–586

    Article  CAS  Google Scholar 

  35. Wang L, Zhu S-J, Wang H-Y, Qu S-N, Zhang Y-L, Zhang J-H, Chen Q-D, Xu H-L, Han W, Yang B (2014) Common origin of green luminescence in carbon nanodots and graphene quantum dots. ACS Nano 8(3):2541–2547

    Article  CAS  PubMed  Google Scholar 

  36. Ding H, Li X-H, Chen X-B, Wei J-S, Li X-B, **ong H-M (2020) Surface states of carbon dots and their influences on luminescence. J Appl Phys 127(23):231101

    Article  CAS  Google Scholar 

  37. Wu X, Li W, Wu P, Ma C, Liu Y, Xu M, Liu S (2018) Long-lived room-temperature phosphorescent nitrogen doped CQDs/PVA composites: fabrication, characterization and application. Eng Sci 4(8):111–118

    Google Scholar 

  38. Li W, Guo H, Li G, Chi Z, Chen H, Wang L, Liu Y, Chen K, Le M, Han Y (2020) White luminescent single-crystalline chlorinated graphene quantum dots. Nanoscale Horiz 5(6):928–933

    Article  CAS  PubMed  Google Scholar 

  39. Lin Z, Xue W, Chen H, Lin J-M (2012) Classical oxidant induced chemiluminescence of fluorescent carbon dots. Chem Commun 48(7):1051–1053

    Article  Google Scholar 

  40. Hallaj T, Amjadi M, Mirbirang F (2020) S, N-doped carbon quantum dots enhanced luminol-Mn (IV) chemiluminescence reaction for detection of uric acid in biological fluids. Microchem J 156:104841

    Article  CAS  Google Scholar 

  41. Amjadi M, Manzoori JL, Hallaj T (2014) Chemiluminescence of graphene quantum dots and its application to the determination of uric acid. J Lumin 153:73–78

    Article  CAS  Google Scholar 

  42. Li J, Yang L, Ruan Y, Chu S, Wang H, Li Z, Jiang C, Liu B, Yang L, Zhang Z (2020) Dual-mode optical nanosensor based on gold nanoparticles and carbon dots for visible detection of As (III) in water. ACS Appl Nano Mater 3(8):8224–8231

    Article  CAS  Google Scholar 

  43. Zhu J, Hu B, Yang L, Jiang C (2021) Upconversion-based dual-mode optical nanosensor for highly sensitive and colorimetric evaluation of heparin in serum. Sensors Actuators B Chem 345:130378

    Article  CAS  Google Scholar 

  44. Bravin C, Amendola V (2021) Plasmonic absorption in antigen-induced aggregated gold nanoparticles: toward a figure of merit for optical nanosensors. ACS Applied Nano Materials 5(1):578–586

    Article  Google Scholar 

  45. Jamil S, Nasir M, Ali Y, Nadeem S, Rashid S, Javed MY, Hayat A (2021) Cr2O3–TiO2-modified filter paper-based portable nanosensors for optical and colorimetric detection of hydrogen peroxide. ACS Omega 6(36):23368–23377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anh NT, Dinh NX, Van Tuan H, Doan MQ, Anh NH, Khi NT, Trang VT, Tri DQ, Le A-T (2022) Eco-friendly copper nanomaterials-based dual-mode optical nanosensors for ultrasensitive trace determination of amoxicillin antibiotics residue in tap water samples. Mater Res Bull 147:111649

    Article  CAS  Google Scholar 

  47. Snitka V, Batiuskaite D, Bruzaite I, Lafont U, Butenko Y, Semprimoschnig C (2021) Surface-enhanced Raman scattering sensors for biomedical and molecular detection applications in space. CEAS Space J 13(3):509–520

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhao X, Campbell S, El-Khoury PZ, Jia Y, Wallace GQ, Claing A, Bazuin CG, Masson J-F (2021) Surface-enhanced raman scattering optophysiology nanofibers for the detection of heavy metals in single breast cancer cells. ACS Sens 6(4):1649–1662

    Article  CAS  PubMed  Google Scholar 

  49. Soda Y, Robinson KJ, Nussbaum R, Bakker E (2021) Protamine/heparin optical nanosensors based on solvatochromism. Chem Sci 12(47):15596–15602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang K, Zhang W, Zhang X, Hu X, Chang S, Zhang H (2020) Highly sensitive gold nanoparticles–DNA nanosensor for γ-radiation detection. ACS Appl Mater Interfaces 12(37):42403–42409

    Article  CAS  PubMed  Google Scholar 

  51. Pagliaro M, Ciriminna R, Yusuf M, Eskandarinezhad S, Wani IA, Ghahremani M, Nezhad ZR (2021) Application of nanocellulose composites in the environmental engineering as a catalyst, flocculants, and energy storages: a review. J Compos Compd 3(7):114–128

    Google Scholar 

  52. Zhang Q, Zhang L, Wu W, **ao H (2020) Methods and applications of nanocellulose loaded with inorganic nanomaterials: a review. Carbohydr Polym 229:115454

    Article  CAS  PubMed  Google Scholar 

  53. Ogundare SA, van Zyl WE (2019) Amplification of SERS “hot spots” by silica clustering in a silver-nanoparticle/nanocrystalline-cellulose sensor applied in malachite green detection. Colloids Surf A Physicochem Eng Asp 570:156–164

    Article  CAS  Google Scholar 

  54. Lee M, Oh K, Choi H-K, Lee SG, Youn HJ, Lee HL, Jeong DH (2018) Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS Sens 3(1):151–159

    Article  CAS  PubMed  Google Scholar 

  55. Dai L, Wang Y, Zou X, Chen Z, Liu H, Ni Y (2020) Ultrasensitive physical, bio, and chemical sensors derived from 1-, 2-, and 3-D nanocellulosic materials. Small 16(13):1906567

    Article  CAS  Google Scholar 

  56. Wang Q, Lei J, Ma J, Yuan G, Sun H (2018) Effect of chitosan-carvacrol coating on the quality of Pacific white shrimp during iced storage as affected by caprylic acid. Int J Biol Macromol 106:123–129

    Article  CAS  PubMed  Google Scholar 

  57. Eyebe GA, Bideau B, Boubekeur N, Loranger É, Domingue F (2017) Environmentally-friendly cellulose nanofibre sheets for humidity sensing in microwave frequencies. Sensors Actuators B Chem 245:484–492

    Article  Google Scholar 

  58. Soltys L, Olkhovyy O, Tatarchuk T, Naushad M (2021) Green synthesis of metal and metal oxide nanoparticles: principles of green chemistry and raw materials. Magnetochemistry 7(11):145

    Article  CAS  Google Scholar 

  59. Zare EN, Padil VV, Mokhtari B, Venkateshaiah A, Wacławek S, Černík M, Tay FR, Varma RS, Makvandi P (2020) Advances in biogenically synthesized shaped metal-and carbon-based nanoarchitectures and their medicinal applications. Adv Colloid Interf Sci 283:102236

    Article  CAS  Google Scholar 

  60. Suwan T, Khongkhunthian S, Okonogi S (2019) Silver nanoparticles fabricated by reducing property of cellulose derivatives. Drug Discov Ther 13(2):70–79

    Article  CAS  PubMed  Google Scholar 

  61. Goci MC, Leudjo Taka A, Martin L, Klink MJ (2023) Chitosan-based polymer nanocomposites for environmental remediation of mercury pollution. Polymers 15(3):482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Matmin J, Affendi I, Endud S (2018) Direct-continuous preparation of nanostructured titania-silica using surfactant-free non-scaffold rice starch template. Nano 8(7):514

    Google Scholar 

  63. Matmin J, Affendi I, Ibrahim SI, Endud S (2018) Additive-free rice starch-assisted synthesis of spherical nanostructured hematite for degradation of dye contaminant. Nano 8(9):702

    Google Scholar 

  64. Pandit S, Behera P, Sahoo J, De M (2019) In situ synthesis of amino acid functionalized carbon dots with tunable properties and their biological applications. ACS Appl Bio Mater 2(8):3393–3403

    Article  CAS  PubMed  Google Scholar 

  65. Yan C, Guo L, Shao X, Shu Q, Guan P, Wang J, Hu X, Wang C (2021) Amino acid–functionalized carbon quantum dots for selective detection of Al3+ ions and fluorescence imaging in living cells. Anal Bioanal Chem 413(15):3965–3974

    Article  CAS  PubMed  Google Scholar 

  66. Nugraha MW, Sambudi NS, Kasmiarno LD, Kamal NA (2021) The effect of amino-functionalization on photoluminescence properties of sugarcane bagasse-derived carbon quantum dots. ASEAN J Chem Eng 21(1):62–72

    Article  CAS  Google Scholar 

  67. Latief U, ul Islam S, Khan ZM, Khan MS (2021) A facile green synthesis of functionalized carbon quantum dots as fluorescent probes for a highly selective and sensitive detection of Fe3+ ions. Spectrochim Acta A Mol Biomol Spectrosc 262:120132

    Article  CAS  PubMed  Google Scholar 

  68. Lu F, Yang S, Song Y, Zhai C, Wang Q, Ding G, Kang Z (2019) Hydroxyl functionalized carbon dots with strong radical scavenging ability promote cell proliferation. Mater Res Express 6(6):065030

    Article  CAS  Google Scholar 

  69. Arunragsa S, Seekaew Y, Pon-On W, Wongchoosuk C (2020) Hydroxyl edge-functionalized graphene quantum dots for gas-sensing applications. Diam Relat Mater 105:107790

    Article  CAS  Google Scholar 

  70. Zheng J, **e Y, Wei Y, Yang Y, Liu X, Chen Y, Xu B (2020) An efficient synthesis and photoelectric properties of green carbon quantum dots with high fluorescent quantum yield. Nano 10(1):82

    CAS  Google Scholar 

  71. Pu Z-F, Wen Q-L, Yang Y-J, Cui X-M, Ling J, Liu P, Cao Q-E (2020) Fluorescent carbon quantum dots synthesized using phenylalanine and citric acid for selective detection of Fe3+ ions. Spectrochim Acta A Mol Biomol Spectrosc 229:117944

    Article  CAS  PubMed  Google Scholar 

  72. Loo AH, Sofer Z, Bouša D, Ulbrich P, Bonanni A, Pumera M (2016) Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl Mater Interfaces 8(3):1951–1957

    Article  CAS  PubMed  Google Scholar 

  73. Zou F-R, Wang S-N, Wang F-F, Liu D, Li Y (2020) Synthesis of lanthanide-functionalized carbon quantum dots for chemical sensing and photocatalytic application. Catalysts 10(8):833

    Article  CAS  Google Scholar 

  74. Thalji MR, Ibrahim AA, Chong KF, Soldatov AV, Ali GAM (2022) Glycopolymer-based materials: synthesis, properties, and biosensing applications. Top Curr Chem 380(5):45

    Article  CAS  Google Scholar 

  75. Pourtaheri E, Taher MA, Ali GA, Agarwal S, Gupta VK (2019) Low-cost and highly sensitive sensor for determining atorvastatin using PbTe nanoparticles-modified graphite screen-printed electrode. Int J Electrochem Sci 14:9622–9632

    Article  CAS  Google Scholar 

  76. Pourtaheri E, Taher MA, Ali GAM, Agarwal S, Gupta VK (2019) Electrochemical detection of gliclazide and glibenclamide on ZnIn2S4 nanoparticles-modified carbon ionic liquid electrode. J Mol Liq 289:111141

    Article  CAS  Google Scholar 

  77. Teo EYL, Ali GAM, Algarni H, Cheewasedtham W, Rujiralai T, Chong KF (2019) One-step production of pyrene-1-boronic acid functionalized graphene for dopamine detection. Mater Chem Phys 231:286–291

    Article  CAS  Google Scholar 

  78. Addanki S, Amiri IS, Yupapin P (2018) Review of optical fibers-introduction and applications in fiber lasers. Results Phys 10:743–750

    Article  Google Scholar 

  79. Vo-Dinh T (2002) Nanobiosensors: probing the sanctuary of individual living cells. J Cell Biochem 87(S39):154–161

    Article  Google Scholar 

  80. Cullum BM, Griffin GD, Miller GH, Vo-Dinh T (2000) Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. Anal Biochem 277(1):25–32

    Article  CAS  PubMed  Google Scholar 

  81. Zheng XT, Yang HB, Li CM (2010) Optical detection of single cell lactate release for cancer metabolic analysis. Anal Chem 82(12):5082–5087

    Article  CAS  PubMed  Google Scholar 

  82. Giannetti A, Barucci A, Cosi F, Pelli S, Tombelli S, Trono C, Baldini F (2015) Optical fiber nanotips coated with molecular beacons for DNA detection. Sensors 15(5):9666–9680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kuo Y-C, Ho JH, Yen T-J, Chen H-F, Lee OK-S (2011) Development of a surface plasmon resonance biosensor for real-time detection of osteogenic differentiation in live mesenchymal stem cells. PLoS One 6(7):e22382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu K, Zhang J, Jiang J, Xu T, Wang S, Chang P, Zhang Z, Ma J, Liu T (2020) Multi-layer optical fiber surface plasmon resonance biosensor based on a sandwich structure of polydopamine-MoSe 2@ Au nanoparticles-polydopamine. Biomed Opt Express 11(12):6840–6851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim YE, Chen J, Langen R, Chan JR (2010) Monitoring apoptosis and neuronal degeneration by real-time detection of phosphatidylserine externalization using a polarity-sensitive indicator of viability and apoptosis. Nat Protoc 5(8):1396–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wilson RL, Connell JP, Grande-Allen KJ (2019) Monitoring oxygen levels within large, tissue-engineered constructs using porphyin-hydrogel microparticles. ACS Biomater Sci Eng 5(9):4522–4530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pathak A, Gupta BD (2021) Palladium nanoparticles embedded PPy shell coated CNTs towards a high performance hydrazine detection through optical fiber plasmonic sensor. Sensors Actuators B Chem 326:128717

    Article  CAS  Google Scholar 

  88. Jia M, Zhang Z, Li J, Shao H, Chen L, Yang X (2017) A molecular imprinting fluorescence sensor based on quantum dots and a mesoporous structure for selective and sensitive detection of 2, 4-dichlorophenoxyacetic acid. Sensors Actuators B Chem 252:934–943

    Article  CAS  Google Scholar 

  89. Chen H, Zhang L, Hu Y, Zhou C, Lan W, Fu H, She Y (2021) Nanomaterials as optical sensors for application in rapid detection of food contaminants, quality and authenticity. Sensors Actuators B Chem 329:129135

    Article  CAS  Google Scholar 

  90. Wang J-Y, Chen M-H, Sheng Z-C, Liu D-F, Wu S-S, Lai W-H (2015) Development of colloidal gold immunochromatographic signal-amplifying system for ultrasensitive detection of Escherichia coli O157: H7 in milk. RSC Adv 5(76):62300–62305

    Article  CAS  Google Scholar 

  91. Zhang H, Ma X, Liu Y, Duan N, Wu S, Wang Z, Xu B (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 74:872–877

    Article  CAS  PubMed  Google Scholar 

  92. J-y X, L-x Z, D-d C, Lin K, H-c F, Wang Y, C-g X (2015) Colorimetric detection of melamine based on methanobactin-mediated synthesis of gold nanoparticles. Food Chem 174:473–479

    Article  Google Scholar 

  93. Kumar DN, Pinker N, Shtenberg G (2020) Porous silicon Fabry–Pérot interferometer for N-acetyl-β-D-Glucosaminidase biomarker monitoring. ACS Sens 5(7):1969–1976

    Article  CAS  PubMed  Google Scholar 

  94. Liu R, Haruna SA, Ali S, Xu J, Zhang Y, Lü P, Li H, Chen Q (2022) A sensitive and accurate fluorescent genosensor for Staphylococcus aureus detection. Sensors Actuators B Chem 355:131311

    Article  CAS  Google Scholar 

  95. Li L, Li Q, Liao Z, Sun Y, Cheng Q, Song Y, Song E, Tan W (2018) Magnetism-resolved separation and fluorescence quantification for near-simultaneous detection of multiple pathogens. Anal Chem 90(15):9621–9628

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors highly acknowledged the grant received by Universiti Teknologi Malaysia (UTM) with the vote no. Q.J130000.2654.18 J18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Matmin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Matmin, J., Mohamad, F., Wahab, R.A., Hatta, M.H.M. (2024). Advanced Optical Nanosensors. In: Ali, G.A.M., Chong, K.F., Makhlouf, A.S.H. (eds) Handbook of Nanosensors. Springer, Cham. https://doi.org/10.1007/978-3-031-47180-3_30

Download citation

Publish with us

Policies and ethics

Navigation