Microorganisms as Potential Source for Food Sustainability

  • Chapter
  • First Online:
Sustainable Food Systems (Volume I)

Part of the book series: World Sustainability Series ((WSUSE))

  • 199 Accesses

Abstract

The existing food structures are based on unsustainable methods that fails to circumvent the issue of rising population and accessibility for the nutritious diet, thus embarking the new sustainable, reliable and nutritious sources such as micro-organisms. Microbes are the most suitable alternative as nutritional source as they have minimal carbon footprint, limited usage of resources such as land, water, nutrients and seasonal dependence. Additionally, with the advances in synthetic biology, potential of microbes has been raised to the next level to meet the many unmet nutritional demands. In this chapter we explore the various microbes as an additional sustainable nutritional source and impact on the recent food structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bajpai P, Bajpai P (2017) Microorganisms used for single-cell protein production. In: Single cell protein production from lignocellulosic biomass, pp 21–30

    Google Scholar 

  • Banks M, Johnson R, Giver L, Bryant G, Guo M (2022) Industrial production of microbial protein products. Curr Opin Biotechnol 75:102707

    Article  CAS  PubMed  Google Scholar 

  • Change IC (2019) Land: An IPCC Special Report on Climate Change. Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems 1– 864 (IPCC)

    Google Scholar 

  • Choi KR, Yu HE, Lee SY (2022) Microbial food: microorganisms repurposed for our food. Micro Biotechnol 15:18–25

    Article  Google Scholar 

  • Ciani M, Lippolis A, Fava F, Rodolfi L, Niccolai A, Tredici MR (2021) Microbes: food for the future. Food 10(5):971

    Article  CAS  Google Scholar 

  • Cuskin F, Lowe EC, Temple MJ, Zhu Y, Cameron E, Pudlo NA, Porter NT, Urs K, Thompson AJ, Cartmell A, Rogowski A, Hamilton BS, Chen R, Tolbert TJ, Piens K, Bracke D, Vervecken W, Hakki Z, Speciale G, Munōz-Munōz JL, Day A, Peña MJ, McLean R, Suits MD, Boraston AB, Atherly T, Ziemer CJ, Williams SJ, Davies GJ, Abbott DW, Martens EC, Gilbert HJ (2015) Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nat 517:165–169

    Article  CAS  Google Scholar 

  • Ercili-Cura D, Hakamies A, Sinisalo L, Vainikka P, Pitkanen J (2020) Food out of thin air. Food Sci Technol 34(2):44–48

    Article  Google Scholar 

  • Erdoğan E, Orhan KA, Derin E, Hava Bazlı EBCİMBÇ (2022) Proteinin Alternatif Bir Protein Kaynağı Olarak Kullanım Olanaklarının İncelenmesi. Intern J Life Sci Biotechnol 15(3):643–668

    Article  Google Scholar 

  • Gao R, Li Z, Zhou X, Bao W, Chemg S, Zheng L (2020) Enhanced lipid production by Yarrowia lipolytica cultured with synthetic and waste-derived high-content volatile fatty acids under alkaline conditions. Biotechnol Biofuels 13:1–16. https://doi.org/10.1186/s13068-019-1645-y

    Article  CAS  Google Scholar 

  • Graham AE, Ledesma-Amaro R (2023) The microbial food revolution. Nat Commun 14(2231):1–10

    CAS  Google Scholar 

  • Helmy M, Elhalis H, Yan L, Chow Y, Selvarajoo K (2022) Perspective: multi-omics and machine learning help unleash the alternative food potential of microalgae. Adv Nutr 14:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Jach ME, Serefko A, Ziaja M, Kieliszek M (2022) Yeast protein as an easily accessible food source. Metabol 12:63

    Article  CAS  Google Scholar 

  • Javourez U, O’Donohue M, Hamelin L (2021) Waste-to-nutrition: a review of current and emerging conversion pathways. Biotechnol Adv 53:107857

    Article  CAS  PubMed  Google Scholar 

  • Jones SW, Karpol A, Friedman S, Maru BT, Tracy BP (2020) Recent advances in single cell protein use as a feed ingredient in aquaculture. Curr Opin Biotechnol 61:189–197

    Article  CAS  PubMed  Google Scholar 

  • Linder T (2019) Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system. Food Secur 11:265–278

    Article  Google Scholar 

  • Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligné B, Gänzle M, Kort R, Pasin G, Pihlanto A, Smid EJ, Hutkins R (2017) Health benefits of fermented foods: microbiota and beyond. Curr Opinion Biotechnol 44:94–102. https://doi.org/10.1016/j.copbio.2016.11.010

    Article  CAS  Google Scholar 

  • Marullo P, Dubourdieu D (2022) Yeast selection for wine flavor modulation. in Managing Wine Quality (ed. Reynolds, A. G.) Elsevier, pp 371–426

    Google Scholar 

  • McFarlin BK, Carpenter KC, Davidson T, McFarlin MA (2013) Baker’s yeast beta glucan supplementation increases salivary iga and decreases cold/flu symptomatic days after intense exercise. J Diet 10:171–183

    Article  CAS  Google Scholar 

  • Moreira JB, Vaz BdS, Cardias BB, Cruz CG, ACAd, Almeida, Costa JAV, MGd, Morais (2022) Microalgae polysaccharides: an alternative source for food production and sustainable agriculture. Polysacc 3(2):441–457

    Google Scholar 

  • Pan M, Barrangou R (2020) Combining omics technologies with CRISPR-based genome editing to study food microbes. Curr Opin Biotechnol 61:198–208

    Article  CAS  PubMed  Google Scholar 

  • Ritala A, Häkkinen ST, Toivari M, Wiebe MG (2017) Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Front Microbiol 13:8–2009

    Google Scholar 

  • Rockström J, Edenhofer O, Gaertner J, DeClerck F (2020) Planet-proofing the global food system. Nat Food 1:3–5

    Article  Google Scholar 

  • Sen T, Barrow CJ, Deshmukh SK (2019) Microbial pigments in the food industry—challenges and the way forward. Front Nutr 6:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharif M, Hammad Zafar M, Islam Aqib A, Saeed M, Farag MR, Alagawany M (2021) Single cell protein: sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquacult 531:735885

    Article  CAS  Google Scholar 

  • Sousa I, Gouveia L, Batista AP, Raymundo A, Bandarra NM (2008) Microalgae in novel food products. Food Chem Res Develop 75–112

    Google Scholar 

  • Sun Z, Sun Z, Scherer L, Tukker A, Spawn-Lee S, Brukner M, Gibbs HK (2022) Dietary change in high-income nations alone can lead to substantial double climate dividend. Nat Food 3:29–37

    Article  CAS  PubMed  Google Scholar 

  • Tamang JP, Shin DH, Jung SJ, Chae SW (2016) Functional properties of microorganisms in fermented foods. Front Microbiol 7:578

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnbull WH, Leeds AR, Edwards GD (1990) Effect of mycoprotein on blood lipids. Am J Clin Nutr 52(4):646–650

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu L, ** Z, Zhang D (2021) Microbial cell factories for green production of vitamins. Front Bioeng Biotechnol 9:473

    Google Scholar 

  • Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, Topf M, Gonzalez CG, Van Treuren W, Han S, Robinson JL, Elias JE, Sonnenburg ED, Gardner CD, Sonnenburg JL (2021) Gut-microbiota-targeted diets modulate human immune status. Cell 184:4137–4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada EA, Sgarbieri VC (2005) Yeast (Saccharomyces cerevisiae) protein concentrate: preparation, chemical composition, and nutritional and functional properties. J Agric Food Chem 53:3931–3936

    Article  CAS  PubMed  Google Scholar 

  • Yuan SFF, Alper HS (2019) Metabolic engineering of microbial cell factories for production of nutraceuticals. Micro Cell Fact 18:1–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, A., Mehrotra, R., Verma, P. (2024). Microorganisms as Potential Source for Food Sustainability. In: Thakur, M. (eds) Sustainable Food Systems (Volume I). World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-031-47122-3_9

Download citation

Publish with us

Policies and ethics

Navigation