Analysis of Mechanical Behavior of Biomaterials of HA/Ti for Bone Tissue Regeneration Using Finite Element Method

  • Conference paper
  • First Online:
XLVI Mexican Conference on Biomedical Engineering (CNIB 2023)

Abstract

This work presents the numerical analysis by FEM of different types of biomaterials based on Hydroxyapatite and Hydroxyapatite-Titanium to estimate the values of maximum stresses in a tibial segment. The mechanical response with respect to an axial applied force of 750N on the tibial plateaus of the bone structure was analyzed. The 3D models were considered static systems. For the numerical analysis, the ANSYS tool was transmitted. The maximum stresses and total deformations in the biomaterials based on Hydroxyapatite and Hydroxyapatite-Titanium are within the range reported in the literature and confirm that the reconstruction of the 3D model used can be a good alternative in the regeneration of bone tissue. In addition, to consider reinforcing them with titanium plates, considerably increasing the stress capacity, which is important in the treatment of implants in long bones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Turnball, G.: 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. III, 1 (2017)

    Google Scholar 

  2. Zhao, Li., et al.: Bionic design and 3D printing of porous titanium alloy scaffolds for bone tissue repair. Compos. Part B: Eng. 162, 154–161 (2019). https://doi.org/10.1016/j.compositesb.2018.10.094

    Article  Google Scholar 

  3. Kanczler, J.M., Wells, J.A., Gibbs, D.M.R., Marshall, K.M., Tang, D.K.O., Oreffo, R.O.C.: Chapter 50 - Bone tissue engineering and bone regeneration. In: Lanza, R., Langer, R., Vacanti, J.P., Atala, A. (ed.): Principles of Tissue Engineering 5th edn. pp. 917–935. Academic Press (2020) ISBN 9780128184226. https://doi.org/10.1016/B978-0-12-818422-6.00052-6

  4. Niedhart, C., **smann, A., Jurgens, C., Marr, A., Blatt, R., Niethard, F.U.: Complications after harvesting of autologous bone from the ventral and dorsal iliac crest – a prospective: controlled study. Z. Orthop. Ihre Grenzgeb. 141(4), 481–486 (2003)

    Article  Google Scholar 

  5. Bagde, A.D., Kuthe, A.M., Nagdeve, S.R., et al.: Geometric modeling and finite element simulation for architecture design of 3D printed bio-ceramic scaffold used in bone tissue engineering. J. Indian Inst. Sci. 99, 361–374 (2019). https://doi.org/10.1007/s41745-019-00120-0

    Article  Google Scholar 

  6. Chahal, S., Kumar, A., Hussian, F.S.J.: Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering a review. J. Biomater. Sci., Polym. Ed. 30(14), 1308–1355 (2019). https://doi.org/10.1080/09205063.2019.1630699

    Article  Google Scholar 

  7. Koons, G.L., Diba, M., Mikos, A.G.: Materials design for bone-tissue engineering. Nat. Rev. Mater. 5, 584–603 (2020). https://doi.org/10.1038/s41578-020-0204-2

    Article  Google Scholar 

  8. Ribas, R.G., et al.: Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: a review. Ceram. Int. 45(17), 21051–21061 (2019). https://doi.org/10.1016/j.ceramint.2019.07.096

    Article  Google Scholar 

  9. Huang, M.-H., Shen, Y.-F., Hsu, T.-T., Huang, T.-H., Shie, M.-Y.: Physical characteristics, antimicrobial and odontogenesis potentials of calcium silicate cement containing hinokitiol. Mater. Sci. Eng.: C 65, 1–8 (2016). https://doi.org/10.1016/j.msec.2016.04.016

    Article  Google Scholar 

  10. Chen, Y.-W., Ho, C.-C., Huang, T.-H., Hsu, T.-T., Shie, M.-Y.: The ionic products from mineral trioxide aggregate–induced odontogenic differentiation of dental pulp cells via activation of the Wnt/β-catenin signaling pathway. J. Endodontics 42(7), 1062–1069 (2016). https://doi.org/10.1016/j.joen.2016.04.019

    Article  Google Scholar 

  11. Ottria, L., Lauritano, D., Andreasi Bassi, M., et al.: Mechanical, chemical and biological aspects of titanium and titanium alloys in implant dentistry. J. Biol. Regul. Homeost. Agents 32(2, suppl 1), 81–90 (2018)

    Google Scholar 

  12. Soufivand, A.A., Abolfathi, N., Hashemi, S.A., Lee, S.J.: Prediction of mechanical behavior of 3D bioprinted tissue-engineered scaffolds using finite element method (FEM) analysis. Addit. Manufact. 33, 101181 (2020). https://doi.org/10.1016/j.addma.2020.101181

    Article  Google Scholar 

  13. Osuchukwu, O.A., et al.: Datasets on the elastic and mechanical properties of hydroxyapatite: A first principle investigation, experiments, and pedagogical perspective. Data Brief 48, 109075 (2023). https://doi.org/10.1016/j.dib.2023.109075. PMID: 37020900; PMCID: PMC10068552

    Article  Google Scholar 

  14. Flores-Sánchez, M.G., et al.: Effect of a plasma synthesized polypyrrole coverage on polylactic acid/hydroxyapatite scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A 109(11), 2199–2211 (2021). https://doi.org/10.1002/jbm.a.37205. Epub 2021 Apr 26 PMID: 33904255

    Article  Google Scholar 

  15. Abols, Y.: Biomecánica y fisiología articular subastragalina. EMC - Podología 11(1), 1–5 (2009). https://doi.org/10.1016/S1762-827X(09)70689-3

    Article  Google Scholar 

  16. Donahue, T.L., Hull, M.L., Rashid, M.M., Jacobs, C.R.: A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 124(3), 273–280 (2002). https://doi.org/10.1115/1.1470171. PMID: 12071261

    Article  Google Scholar 

  17. Kim, W.H., et al.: Optimized dental implant fixture design for the desirable stress distribution in the surrounding bone region: a biomechanical analysis. Materials (Basel). 12(17), 2749 (2019). https://doi.org/10.3390/ma12172749. PMID:31461942;PMCID:PMC6747764

    Article  Google Scholar 

  18. Simon, U., Augat, P., Ignatius, A., Claes, L.: Influence of the stiffness of bone defect implants on the mechanical conditions at the interface–a finite element analysis with contact. J. Biomech. 36(8), 1079–1086 (2003). https://doi.org/10.1016/s0021-9290(03)00114-3. PMID: 12831732

    Article  Google Scholar 

  19. Kundu, J., Pati, F., Shim, J.-H., Cho, D.-W.: Rapid prototy** technology for bone regeneration. In: Narayan, R., (ed.) Rapid Prototy** of Biomaterials, pp. 254–284. Woodhead Publishing (2014) ISBN 9780857095992 https://doi.org/10.1533/9780857097217.254

  20. Bruschi, S., Bertolini, R., Ghiotti, A.: Coupling machining and heat treatment to enhance the wear behaviour of an additive manufactured Ti6Al4V titanium alloy. Tribol. Int. 116, 58–68 (2017). https://doi.org/10.1016/j.triboint.2017.07.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Fernanda Toledo Romo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romo, M.F.T., Sánchez, M.F., Sierra, H.A., Aguilar, E.R. (2024). Analysis of Mechanical Behavior of Biomaterials of HA/Ti for Bone Tissue Regeneration Using Finite Element Method. In: Flores Cuautle, J.d.J.A., et al. XLVI Mexican Conference on Biomedical Engineering. CNIB 2023. IFMBE Proceedings, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-031-46936-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46936-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46935-0

  • Online ISBN: 978-3-031-46936-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation