Microbial Biofilm Reactor for Sustainable Wastewater Treatment

  • Chapter
  • First Online:
Green Technologies for Industrial Waste Remediation

Abstract

Biofilm reactors continue to be an advanced technological solution for sustainable wastewater treatment. Microbial biofilm reactors (MBRs) are utilize support materials or surfaces to facilitate the attachment of biofilms, leading to increased concentrations of active biomass or microbes. This enhanced attachment provides improved rates of microbial degradation of contaminants. MBR, as a biological system for wastewater treatment, offer high efficiency and numerous advantages. These include operational flexibility, reduced hydraulic maintenance, small space requirement, extended biomass dwell time, high levels of energetic biomass, enhanced capability to destroy refractory chemicals, and reduced sludge production due to slower microbial growth rates. The MBR system encompasses a microbial community capable of decomposing various nutrients, including carbonaceous materials, phosphorous-containing compounds, and nitrogen-containing compounds, and trapped pathogens from the wastewater. This chapter examines the development and applications of different MBR for sustainable wastewater treatment, addressing both their drawbacks and prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelfattah A, Hossain MI, Cheng L (2020) High-strength wastewater treatment using microbial biofilm reactor: a critical review. World J Microbiol Biotechnol 36:1–10

    Article  Google Scholar 

  • Al-Amshawee S, Yunus MYBM, Azoddein AAM, Hassell DG, Dakhil IH, Hasan HA (2020a) Electrodialysis desalination for water and wastewater: a review. Chem Eng J 380:122231

    Article  CAS  Google Scholar 

  • Al-Amshawee SK, Yunus MY, Azoddein AA (2020b) A novel microbial biofilm carrier for wastewater remediation. In IOP Conference Series: Materials Science and Engineering (Vol. 736, No. 7, p. 072006). IOP Publishing

    Google Scholar 

  • Alotaibi GF, Bukhari MA (2021) Factors influencing bacterial biofilm formation and development. Am. J. Biomed. Sci. Res 12(6):617–626

    Article  Google Scholar 

  • Ashadullah AKM, Shafiquzzaman M, Haider H, Alresheedi M, Azam MS, Ghumman AR (2021) Wastewater treatment by microalgal membrane bioreactor: evaluating the effect of organic loading rate and hydraulic residence time. J Environ Manage 278:111548. https://doi.org/10.1016/j.jenvman.2020.111548

    Article  CAS  Google Scholar 

  • Asri M, Elabed S, Koraichi SI, El Ghachtouli N (2018) Biofilm-based systems for industrial wastewater treatment. Handbook of environmental materials management, 1–21

    Google Scholar 

  • Aybar M, Pizarro G, Boltz JP, Downing L, Nerenberg R (2014) Energy-efficient wastewater treatment via the air-based, hybrid membrane biofilm reactor (hybrid MfBR). Water science and technology, 69(8), 1735–1741. https://doi.org/10.2166/wst.2014.086

  • Aziz A, Basheer F, Sengar A, Khan SU, Farooqi IH (2019) Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater. Sci Total Environ 686:681–708. https://doi.org/10.1016/j.scitotenv.2019.05.295

    Article  CAS  Google Scholar 

  • Barwal A, Chaudhary R (2014) To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems: a review. Reviews in Environmental Science and Bio/Technology, 13, 285–299. https://doi.org/10.1007/s11157-014-9333-7

  • Bendinger B (1993) The copy workshop workbook. Chicago, IL: Copy Workshop

    Google Scholar 

  • Bering S, Mazur J, Tarnowski K, Janus M, Mozia S, Morawski AW (2018) The application of moving bed bio-reactor (MBBR) in commercial laundry wastewater treatment. Science of the Total Environment, 627, 1638–1643. https://doi.org/10.1016/j.scitotenv.2018.02.029

  • Bohuss I, Rékasi T, Szikora S, Barkács K, Záray G, Ács É (2005) Interaction of acetochlor and atrazine with natural freshwater biofilms grown on polycarbonate substrate in lake Velence (Hungary). Microchem J 79(1–2):201–205

    Article  CAS  Google Scholar 

  • Borea L, Naddeo V, Belgiorno V (2017) An electro moving bed membrane bioreactor (eMB-MBR) as a novel technology for wastewater treatment and reuse. In Frontiers in Wastewater Treatment and Modelling: FICWTM 2017 1 (pp. 159–164). Springer International Publishing. https://doi.org/10.1007/978-3-319-58421-8_24

  • Borja R, Rincón B, Raposo F, Domınguez JR, Millán F, Martın A (2004) Mesophilic anaerobic digestion in a fluidised-bed reactor of wastewater from the production of protein isolates from chickpea flour. Process Biochem 39(12):1913–1921. https://doi.org/10.1016/j.procbio.2003.09.022

    Article  CAS  Google Scholar 

  • Brindle K, Stephenson T, Semmens MJ (1999) Pilot-plant treatment of a high-strength brewery wastewater using a membrane-aeration bioreactor. Water Environ Res 71(6):1197–1216. https://doi.org/10.2175/106143096x122492

    Article  CAS  Google Scholar 

  • Bustamante M, Liao W (2017) A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation. Bioresource technology, 234, 415–423. https://doi.org/10.1016/j.biortech.2017.03.065

  • Bustillo-Lecompte, C. F., &Mehrvar, M. (2017). Treatment of actual slaughterhouse wastewater by combined anaerobic–aerobic processes for biogas generation and removal of organics and nutrients: An optimization study towards a cleaner production in the meat processing industry. Journal of cleaner production, 141, 278–289. https://doi.org/10.1016/j.jclepro.2016.09.060

  • Butler, C. S., & Boltz, J. P. (2013). 3.6 Biofilm Processes and Control in Water and Wastewater Treatment. In Comprehensive Water Quality and Purification (pp. 90–107). Elsevier. https://doi.org/10.1016/B978-0-12-382182-9.00083-9

  • Chattopadhyay I, Usman TM, Varjani S (2022) Exploring the role of microbial biofilm for industrial effluents treatment. Bioengineered 13(3):6420–6440

    Article  CAS  Google Scholar 

  • Chen C, Sun M, Liu Z, Zhang J, **ao K, Zhang X, Huang X (2021) Robustness of granular activated carbon-synergized anaerobic membrane bioreactor for pilot-scale application over a wide seasonal temperature change. Water Res 189:116552. https://doi.org/10.1016/j.watres.2020.116552

    Article  CAS  Google Scholar 

  • Chen F, Zeng S, Luo Z, Ma J, Zhu Q, Zhang S (2020a) A novel MBBR–MFC integrated system for high-strength pulp/paper wastewater treatment and bioelectricity generation. Sep Sci Technol 55(14):2490–2499. https://doi.org/10.1080/01496395.2019.1641519

    Article  CAS  Google Scholar 

  • Chen, G. H., van Loosdrecht, M. C., Ekama, G. A., &Brdjanovic, D. (Eds.). (2020b). Biological wastewater treatment: principles, modeling and design. IWA publishing.

    Google Scholar 

  • Choudhary, P., Singh, S., & Agarwal, V. (2020). Microbial biofilms. In Bacterial Biofilms. IntechOpen.

    Google Scholar 

  • Chrispim, M. C., & Nolasco, M. A. (2017). Greywater treatment using a moving bed biofilm reactor at a university campus in Brazil. Journal of cleaner production, 142, 290–296. https://doi.org/10.1016/j.jclepro.2016.07.162

  • Chu L, Wang J (2011) Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed biofilm reactor for treating wastewater with a low C/N ratio. Chemosphere 83(1):63–68

    Article  CAS  Google Scholar 

  • Cinperi NC, Ozturk E, Yigit NO, Kitis M (2019) Treatment of woolen textile wastewater using membrane bioreactor, nanofiltration and reverse osmosis for reuse in production processes. J Clean Prod 223:837–848. https://doi.org/10.1016/j.jclepro.2019.03.166

    Article  CAS  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323(5917):1014–1015

    Article  CAS  Google Scholar 

  • Costerton JW (1999) Introduction to biofilm. Int J Antimicrob Agents 11(3–4):217–239

    Article  CAS  Google Scholar 

  • Côté, P., Peeters, J., Adams, N., Hong, Y., Long, Z. & Ireland, J. (2015) A new membrane-aerated biofilm reactor for low energy wastewater treatment: Pilot results. In: 88th Annual Water Environment Federation Technical Exhibition and Conference, WEFTEC 2015. Vol. 62014, pp. 4226–4239

    Google Scholar 

  • Cotter PA, Stibitz S (2007) c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 10(1):17–23

    Article  CAS  Google Scholar 

  • Cowan MM, Warren TM, Fletcher M (1991) Mixed-species colonization of solid surfaces in laboratory biofilms. Biofouling 3(1):23–34

    Article  Google Scholar 

  • Crist, B. V. (2000). Handbook of monochromatic XPS spectra: The elements of native oxides. Wiley

    Google Scholar 

  • Daigger GT, Boltz JP (2011) Trickling filter and trickling filter-suspended growth process design and operation: A state-of-the-art review. Water Environ Res 83(5):388–404. https://doi.org/10.2175/106143010X12681059117210

    Article  CAS  Google Scholar 

  • Davey ME, O’toole, G. A. (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867

    Article  CAS  Google Scholar 

  • Dezotti, M., Lippel, G., Bassin, J. P., Bassin, J. P., &Dezotti, M. (2018). Moving bed biofilm reactor (MBBR). Advanced Biological Processes for Wastewater Treatment: Emerging, Consolidated Technologies and Introduction to Molecular Techniques, 37–74.

    Google Scholar 

  • di Biase, A., Devlin, T. R., Kowalski, M., &Oleszkiewicz, J. A. (2018). Optimization of surface area loading rate for an anaerobic moving bed biofilm reactor treating brewery wastewater. Journal of Cleaner Production, 172, 1121–1127. https://doi.org/10.1016/j.jclepro.2017.10.256

  • Di Fabio, S., Lampis, S., Zanetti, L., Cecchi, F., & Fatone, F. (2013). Role and characteristics of problematic biofilms within the removal and mobility of trace metals in a pilot-scale membrane bioreactor. Process Biochemistry, 48(11), 1757–1766. https://doi.org/10.1016/j.procbio.2013.08.005

  • Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J., ... & Thornbrugh, D. J. (2009). Eutrophication of US freshwaters: analysis of potential economic damages. https://doi.org/10.1021/es801217q

  • Dong, B., Chen, H., Yang, Y., He, Q., & Dai, X. (2014). Treatment of printing and dyeing wastewater using MBBR followed by membrane separation process. Desalination and Water Treatment, 52(22–24), 4562–4567. https://doi.org/10.1080/19443994.2013.803780

  • Dong Z, Lu M, Huang W, Xu X (2011) Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier. J Hazard Mater 196:123–130

    Article  CAS  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881

    Article  Google Scholar 

  • Dunne Jr, W. M. (2002). Bacterial adhesion: seen any good biofilms lately?.Clinical microbiology reviews, 15(2), 155–166.

    Google Scholar 

  • Ebrahimi, A., Najafpour, G. D., & Nikzad, M. (2017). Evaluation of treatability of high strength wastewater in a three stage-rotating biological contactor. Journal of Environmental Engineering and Landscape Management, 25(3), 234–240. https://doi.org/10.3846/16486897.2016.1223083

  • Espina L, Pagán R, López D, García-Gonzalo D (2015) Individual constituents from essential oils inhibit biofilm mass production by multi-drug resistant Staphylococcus aureus. Molecules 20(6):11357–11372

    Article  CAS  Google Scholar 

  • Fatehifar M, Borghei SM, Ekhlasi Nia A (2018) Application of moving bed bioflm reactor in the removal of pharmaceutical compounds (diclofenac and ibuprofen). J Environ Chem Eng 6:5530–5535. https://doi.org/10.1016/j.jece.2018.08.029

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The Biofilm Matrix. Nature Reviews Microbiology 8(9):623–633

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14(9):563–575

    Article  CAS  Google Scholar 

  • Forbis-Stokes AA, Rocha-Melogno L, Deshusses MA (2018) Nitrifying trickling filters and denitrifying bioreactors for nitrogen management of high-strength anaerobic digestion effluent. Chemosphere 204:119–129

    Article  CAS  Google Scholar 

  • Freeman, D., Fernández, Y. B., Wilson, A., McKew, B. A., Whitby, C., Clark, D. R., ... & Hassard, F. (2020). Nitrogen oxidation consortia dynamics influence the performance of full-scale rotating biological contactors. Environment international, 135, 105354. https://doi.org/10.1016/j.envint.2019.105354

  • Gilbert, E. M., Agrawal, S., Karst, S. M., Horn, H., Nielsen, P. H., & Lackner, S. (2014). Low temperature partial nitritation/anammox in a moving bed biofilm reactor treating low strength wastewater. Environmental science & technology, 48(15), 8784–8792. https://doi.org/10.1021/es501649m

  • Gupta, A. B., & Gupta, S. K. (2001). Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerobic RBC biofilm. Water Research, 35(7), 1714–1722. https://doi.org/10.1016/S0043-1354(00)00442-5

  • Hafner B (2006) Energy dispersive spectroscopy on the SEM: a primer. University of Minnesota, Characterization Facility, pp 1–26

    Google Scholar 

  • Hamza F, Kumar AR, Zinjarde S (2016a) Antibiofilm potential of a tropical marine Bacillus licheniformis isolate: role in disruption of aquaculture associated biofilms. Aquac Res 47(8):2661–2669

    Article  CAS  Google Scholar 

  • Hamza RA, Iorhemen OT, Tay JH (2016b) Advances in biological systems for the treatment of high-strength wastewater. Journal of Water Process Engineering 10:128–142. https://doi.org/10.1016/j.jwpe.2016.02.008

    Article  Google Scholar 

  • Hassard, F., Biddle, J., Cartmell, E., Jefferson, B., Tyrrel, S., & Stephenson, T. (2015). Rotating biological contactors for wastewater treatment–a review. Process Safety and Environmental Protection, 94, 285–306. https://doi.org/10.1016/j.psep.2014.07.003

  • Henze, M., van Loosdrecht, M. C., Ekama, G. A., &Brdjanovic, D. (Eds.). (2008). Biological wastewater treatment. IWA publishing.

    Google Scholar 

  • Hossain MA, Zahid AM, Arifunnahar M, Siddique MNA (2019) Effect of brick kiln on arable land degradation, environmental pollution and consequences on livelihood of Bangladesh. Journal of Science, Technology and Environment Informatics 6(02):474–488

    Article  Google Scholar 

  • Hossain, M. I., Paparini, A., & Cord-Ruwisch, R. (2018). Direct oxygen uptake from air by novel glycogen accumulating organism dominated biofilm minimizes excess sludge production. Science of the Total Environment, 640, 80–88. https://doi.org/10.1016/j.scitotenv.2018.05.292

  • Houweling, D., & Daigger, G. T. (2019). Intensifying Activated Sludge Using Media-Supported Biofilms. CRC Press. https://www.taylorfrancis.com/books/9780429522420

  • Huang H, Peng C, Peng P, Lin Y, Zhang X, Ren H (2019) Towards the biofilm characterization and regulation in biological wastewater treatment. Appl Microbiol Biotechnol 103:1115–1129

    Article  CAS  Google Scholar 

  • Hunter B, Deshusses MA (2020) Resources recovery from high-strength human waste anaerobic digestate using simple nitrification and denitrification filters. Sci Total Environ 712:135509. https://doi.org/10.1016/j.scitotenv.2019.135509

    Article  CAS  Google Scholar 

  • Husain Khan, A., Abdul Aziz, H., Khan, N. A., Ahmed, S., Mehtab, M. S., Vambol, S., ... & Islam, S. (2023). Pharmaceuticals of emerging concern in hospital wastewater: removal of Ibuprofen and Ofloxacin drugs using MBBR method. International Journal of Environmental Analytical Chemistry, 103(1), 140–154. https://doi.org/10.1080/03067319.2020.1855333.

  • Ikuma K, Decho AW, Lau BL (2013) The extracellular bastions of bacteria—a biofilm way of life. Nature Education Knowledge 4(2):2–19

    Google Scholar 

  • Ivanovic, I., & Leiknes, T. O. (2012). The biofilm membrane bioreactor (BF-MBR)—a review. Desalination and Water Treatment, 37(1–3), 288–295. https://doi.org/10.1080/19443994.2012.661283

  • Janczewski L, Trusek-Holownia A (2016) Biofilm-based membrane reactors–selected aspects of the application and microbial layer control. Desalin Water Treat 57(48–49):22909–22916

    Article  CAS  Google Scholar 

  • Jefferson, K. K. (2004). What drives bacteria to produce a biofilm?.FEMS microbiology letters, 236(2), 163–173.

    Google Scholar 

  • Jiang, Q., Ngo, H. H., Nghiem, L. D., Hai, F. I., Price, W. E., Zhang, J., ... & Guo, W. (2018). Effect of hydraulic retention time on the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system for micropollutants removal from municipal wastewater. Bioresource technology, 247, 1228–1232. https://doi.org/10.1016/j.biortech.2017.09.114

  • Kantawanichkul S, Karnchanawong S, **g SR (2009a) Treatment of fermented fish production wastewater by constructed wetland system in Thailand. Chiang Mai J Sci 36:149–157

    CAS  Google Scholar 

  • Kantawanichkul S, Kladprasert S, Brix H (2009b) Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involucratus. Ecol Eng 35(2):238–247

    Article  Google Scholar 

  • Karadag D, Koroglu OE, Ozkaya B, Cakmakci M, Heaven S, Banks C, Serna-Maza A (2015) Anaerobic granular reactors for the treatment of dairy wastewater: A review. Int J Dairy Technol 68(4):459–470. https://doi.org/10.1111/1471-0307.12252

    Article  Google Scholar 

  • Karygianni L, Ren Z, Koo H, Thurnheer T (2020) Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol 28(8):668–681

    Article  CAS  Google Scholar 

  • Khatoon N, Naz I, Ali MI, Ali N, Jamal A, Hameed A, Ahmed S (2014) Bacterial succession and degradative changes by biofilm on plastic medium for wastewater treatment. J Basic Microbiol 54(7):739–749

    Article  CAS  Google Scholar 

  • Kornaros, M., &Lyberatos, G. (2006). Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. Journal of Hazardous Materials, 136(1), 95–102. https://doi.org/10.1016/j.jhazmat.2005.11.018

  • Kröpfl K, Vladár P, Szabó K, Acs E, Borsodi AK, Szikora S, Záray G (2006) Chemical and biological characterisation of biofilms formed on different substrata in Tisza river (Hungary). Environ Pollut 144(2):626–631

    Article  Google Scholar 

  • Kunetz TE, Oskouie A, Poonsapaya A, Peeters J, Adams N, Long Z, Côté P (2016) Innovative membrane-aerated biofilm reactor pilot test to achieve low-energy nutrient removal at the Chicago MWRD. Proc Water Environ Fed 2016(14):2973–2987

    Article  Google Scholar 

  • Lai CY, Lv PL, Dong QY, Yeo SL, Rittmann BE, Zhao HP (2018) Bromate and nitrate bioreduction coupled with poly-β-hydroxybutyrate production in a methane-based membrane biofilm reactor. Environ Sci Technol 52(12):7024–7031. https://doi.org/10.1021/acs.est.8b00152

    Article  CAS  Google Scholar 

  • Lee WN, Kang IJ, Lee CH (2006) Factors affecting filtration characteristics in membrane-coupled moving bed biofilm reactor. Water Res 40(9):1827–1835. https://doi.org/10.1016/j.watres.2006.03.007

    Article  CAS  Google Scholar 

  • Leiknes, T., & Ødegaard, H. (2007). The development of a biofilm membrane bioreactor. Desalination, 202(1–3), 135–143. https://doi.org/10.1016/j.desal.2005.12.049.

  • Lewandowski Z, Boltz JP (2011) Biofilms in water and wastewater treatment

    Google Scholar 

  • Leyva-Díaz JC, Martín-Pascual J, Poyatos JM (2017) Moving bed biofilm reactor to treat wastewater. International journal of environmental science and technology, 14, 881–910. https://doi.org/10.1007/s13762-016-1169-y

  • Leyva-Díaz JC, Monteoliva-García A, Martín-Pascual J, Munio MM, García-Mesa JJ, Poyatos JM (2020) Moving bed biofilm reactor as an alternative wastewater treatment process for nutrient removal and recovery in the circular economy model. Biores Technol 299:122631. https://doi.org/10.1016/j.biortech.2019.122631

    Article  CAS  Google Scholar 

  • Leyva-Díaz JC, Muñío MM, González-López J, Poyatos JM (2016) Anaerobic/anoxic/oxic configuration in hybrid moving bed biofilm reactor-membrane bioreactor for nutrient removal from municipal wastewater. Ecol Eng 91:449–458. https://doi.org/10.1016/j.ecoleng.2016.03.006

    Article  Google Scholar 

  • Liao, J., Fang, C., Yu, J., Sathyagal, A., Willman, E., & Liu, W. T. (2017). Direct treatment of high-strength soft drink wastewater using a down-flow hanging sponge reactor: performance and microbial community dynamics. Applied Microbiology and Biotechnology, 101, 5925–5936. https://doi.org/10.1007/s00253-017-8326-1

  • Lin, H., Gao, W., Meng, F., Liao, B. Q., Leung, K. T., Zhao, L., Hong, H. (2012) Membrane bioreactors for industrial wastewater treatment: a critical review. Critical reviews in environmental science and technology, 42(7), 677–740. https://doi.org/10.1080/10643389.2010.526494

  • Loeb GI, Neihof RA (1975) Marine conditioning films

    Google Scholar 

  • Malovanyy, A., Yang, J., Trela, J., & Plaza, E. (2015). Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment. Bioresource technology, 180, 144–153. 180:144–153. https://doi.org/10.1016/j.biortech.2014.12.101

  • Mannina, G., Ekama, G. A., Capodici, M., Cosenza, A., Di Trapani, D., & Ødegaard, H. (2017). Moving bed membrane bioreactors for carbon and nutrient removal: The effect of C/N variation. Biochemical Engineering Journal, 125, 31–40. https://doi.org/10.1016/j.bej.2017.05.005

  • Maric S (2007) Characteristics and significance of microbial biofilm formation. Period Biol 109:1–7

    Google Scholar 

  • Martin KJ, Nerenberg R (2012) The membrane biofilm reactor (MBfR) for water and wastewater treatment: principles, applications, and recent developments. Biores Technol 122:83–94. https://doi.org/10.1016/j.biortech.2012.02.110

    Article  CAS  Google Scholar 

  • Maunders, E., & Welch, M. (2017). Matrix exopolysaccharides; the sticky side of biofilm formation. FEMS microbiology letters, 364(13).

    Google Scholar 

  • McCarty, P. L. (2018). What is the best biological process for nitrogen removal: when and why? https://doi.org/10.1021/acs.est.7b05832

  • McCarty PL, Meyer TE (2005) Numerical model for biological fluidized-bed reactor treatment of perchlorate-contaminated groundwater. Environ Sci Technol 39(3):850–858

    Article  CAS  Google Scholar 

  • McCarty PL, Bae J, Kim J (2011) Domestic wastewater treatment as a net energy producer–can this be achieved? Environ Sci Technol 45:7100–7106. https://doi.org/10.1021/es2014264

    Article  CAS  Google Scholar 

  • Mehrabi S, Houweling D, Dagnew M (2020) Establishing mainstream nitrite shunt process in membrane aerated biofilm reactors: impact of organic carbon and biofilm scouring intensity. Journal of Water Process Engineering 37:101460

    Article  Google Scholar 

  • Meier-Davis, S. (2006). Host response to biofilms/Eds.: JL Pace, ME Rupp, RG Finch. Taylor & Francis. Biofilms, infection, and antimicrobial therapy, 305.

    Google Scholar 

  • Mittelman, M. W. (1996). Adhesion to biomaterials. Bacterial adhesion: molecular and ecological diversity. New York: Wiley-Liss, Inc, 1996, 89–127.

    Google Scholar 

  • Mojiri A, Bashir MJ (2022) Wastewater treatment: current and future techniques. Water 14(3):448

    Article  Google Scholar 

  • Mulkerrins DDACE, Dobson ADW, Colleran E (2004) Parameters affecting biological phosphate removal from wastewaters. Environ Int 30(2):249–259

    Article  CAS  Google Scholar 

  • Nacheva PM, Chavez GM, Zúñiga MG, Bustos C, Orozco YH (2008) Comparison of bioreactors with different kinds of submerged packed beds for domestic wastewater treatment. Water Sci Technol 58(1):29–36

    Article  CAS  Google Scholar 

  • Nair HA, Periasamy S, Yang L, Kjelleberg S, Rice SA (2017) Real time, spatial, and temporal map** of the distribution of c-di-GMP during biofilm development. J Biol Chem 292(2):477–487

    Article  CAS  Google Scholar 

  • Najafpour GD, Zinatizadeh AAL, Lee LK (2006) Performance of a three-stage aerobic RBC reactor in food canning wastewater treatment. Biochem Eng J 30(3):297–302. https://doi.org/10.1016/j.bej.2006.05.013

    Article  CAS  Google Scholar 

  • Naz I, Batool SAU, Ali N, Khatoon N, Atiq N, Hameed A, Ahmed S (2013) Monitoring of growth and physiological activities of biofilm during succession on polystyrene from activated sludge under aerobic and anaerobic conditions. Environ Monit Assess 185:6881–6892

    Article  CAS  Google Scholar 

  • Naz I, Hodgson D, Smith A, Marchesi J, Ahmed S, Avignone-Rossa C, Saroj DP (2016) Effect of the chemical composition of filter media on the microbial community in wastewater biofilms at different temperatures. RSC Adv 6(106):104345–104353

    Article  CAS  Google Scholar 

  • Naz, I., Saroj, D. P., Mumtaz, S., Ali, N., & Ahmed, S. (2015). Assessment of biological trickling filter systems with various packing materials for improved wastewater treatment. Environmental Technology, 36(4), 424–434. https://doi.org/10.1080/09593330.2014.951400

  • Nerenberg R (2016) The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process. Curr Opin Biotechnol 38:131–136. https://doi.org/10.1016/j.copbio.2016.01.015

    Article  CAS  Google Scholar 

  • Neu TR, Lawrence JR (1997) Development and structure of microbial biofilms in river water studied by confocal laser scanning microscopy. FEMS Microbiol Ecol 24(1):11–25

    Article  CAS  Google Scholar 

  • Nhut, H. T., Hung, N. T. Q., Sac, T. C., Bang, N. H. K., Tri, T. Q., Hiep, N. T., & Ky, N. M. (2020). Removal of nutrients and organic pollutants from domestic wastewater treatment by sponge-based moving bed biofilm reactor. environmental engineering research, 25(5), 652–658. https://doi.org/10.4491/eer.2019.285

  • Niu, Z., Guo, H., Zhou, Y., & **a, S. (2021). Unraveling membrane fouling in anoxic/oxic membrane bioreactors treating anaerobically digested piggery wastewater. Journal of Environmental Chemical Engineering, 9(1), 104985. https://doi.org/10.1016/j.jece.2020.104985.

  • Ødegaard, H. (2006). Innovations in wastewater treatment:–the moving bed biofilm process. Water science and technology, 53(9), 17–33. https://doi.org/10.2166/wst.2006.284

  • Odlare M, Pell M, Arthurson JV, Abubaker J, Nehrenheim E (2014) Combined mineral N and organic waste fertilization–effects on crop growth and soil properties. J Agric Sci 152(1):134–145

    Article  CAS  Google Scholar 

  • Olutiola PO, Awojobi KO, Oyedeji O, Ayansina ADV, Cole OO (2010) Relationship between bacterial density and chemical composition of a tropical sewage oxidation pond. Afr J Environ Sci Technol 4(9):595–602

    CAS  Google Scholar 

  • Ooi, G. T., Tang, K., Chhetri, R. K., Kaarsholm, K. M., Sundmark, K., Kragelund, C., ... & Andersen, H. R. (2018). Biological removal of pharmaceuticals from hospital wastewater in a pilot-scale staged moving bed biofilm reactor (MBBR) utilising nitrifying and denitrifying processes. Bioresource technology, 267, 677–687. https://doi.org/10.1016/j.biortech.2018.07.077

  • Pakshirajan K, Kheria S (2012) Continuous treatment of coloured industry wastewater using immobilized Phanerochaetechrysosporium in a rotating biological contactor reactor. J Environ Manage 101:118–123. https://doi.org/10.1016/j.jenvman.2012.02.008

    Article  CAS  Google Scholar 

  • Pal A, Gin KYH, Lin AYC, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408(24):6062–6069

    Article  CAS  Google Scholar 

  • Park, J. H., Choi, O., Lee, T. H., Kim, H., & Sang, B. I. (2016). Pyrosequencing analysis of microbial communities in hollow fiber-membrane biofilm reactors system for treating high-strength nitrogen wastewater. Chemosphere, 163, 192–201. https://doi.org/10.1016/j.chemosphere.2016.07.099

  • Peeters J, Adams N, Long Z, Côté P, Kunetz T (2017a) Demonstration of innovative MABR low-energy nutrient removal technology at Chicago MWRD. Water Practice & Technology 12(4):927–936

    Article  Google Scholar 

  • Peeters, J., Long, Z., Houweling, D., Côté, P., Daigger, G. T., &Snowling, S. (2017a). Nutrient removal intensification with MABR–develo** a process model supported by piloting. In Nutrient Removal and Recovery Symposium 2017b. Water Environment Federation.

    Google Scholar 

  • Perez-Calleja, P., Aybar, M., Picioreanu, C., Esteban-Garcia, A. L., Martin, K. J., & Nerenberg, R. (2017). Periodic venting of MABR lumen allows high removal rates and high gas-transfer efficiencies. Water research, 121, 349–360. https://doi.org/10.1016/j.watres.2017.05.042

  • Pfister S, Vionnet S, Levova T, Humbert S (2016) Ecoinvent 3: assessing water use in LCA and facilitating water footprinting. The International Journal of Life Cycle Assessment 21:1349–1360

    Article  Google Scholar 

  • Pinto HB, de Souza BM, Dezotti M (2018) Treatment of a pesticide industry wastewater mixture in a moving bed biofilm reactor followed by conventional and membrane processes for water reuse. J Clean Prod 201:1061–1070. https://doi.org/10.1016/j.jclepro.2018.08.113

    Article  CAS  Google Scholar 

  • Prakash, B., Veeregowda, B. M., & Krishnappa, G. (2003). Biofilms: a survival strategy of bacteria. Current science, 1299–1307.

    Google Scholar 

  • Puttamreddy S, Cornick NA, Minion FC (2010) Genome-wide transposon mutagenesis reveals a role for pO157 genes in biofilm development in Escherichia coli O157: H7 EDL933. Infect Immun 78(6):2377–2384

    Article  CAS  Google Scholar 

  • Qaderi F, Sayahzadeh AH, Azizi M (2018) Efficiency optimization of petroleum wastewater treatment by using of serial moving bed biofilm reactors. J Clean Prod 192:665–677. https://doi.org/10.1016/j.jclepro.2018.04.257

    Article  CAS  Google Scholar 

  • Qin L, Gao M, Zhang M, Feng L, Liu Q, Zhang G (2020) Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control. Water Res 187:116430. https://doi.org/10.1016/j.watres.2020.116430

    Article  CAS  Google Scholar 

  • Rashid RA, Rahman RA, Rasid RA (2009) Biofilm and multimedia filtration for rainwater treatment. Journal of Sustainable Development 2(1):196–199

    Google Scholar 

  • Ribera-Pi, J., Badia-Fabregat, M., Arias, D., Gómez, V., Taberna, E., Sanz, J., ... & Jubany, I. (2020). Coagulation-flocculation and moving bed biofilm reactor as pre-treatment for water recycling in the petrochemical industry. Science of The Total Environment, 715, 136800. https://doi.org/10.1016/j.scitotenv.2020.136800

  • Rittmann, B. E. (2006). The membrane biofilm reactor: the natural partnership of membranes and biofilm. Water Science and Technology, 53(3), 219–225. https://doi.org/10.2166/wst.2006.096

  • Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: principles and applications. McGraw-Hill Education.

    Google Scholar 

  • Rodriguez-Sanchez, A., Leyva-Diaz, J. C., Gonzalez-Lopez, J., &Poyatos, J. M. (2018). Membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor for the treatment of variable salinity wastewater: Influence of biomass concentration and hydraulic retention time. Chemical Engineering Journal, 336, 102–111. https://doi.org/10.1016/j.cej.2017.10.118

  • Rosenberg, M., &Kjelleberg, S. (1986). Hydrophobic interactions: role in bacterial adhesion. Advances in microbial ecology, 353–393.

    Google Scholar 

  • Santos AD, Martins RC, Quinta-Ferreira RM, Castro LM (2020) Moving bed biofilm reactor (MBBR) for dairy wastewater treatment. Energy Rep 6:340–344. https://doi.org/10.1016/j.egyr.2020.11.158

    Article  Google Scholar 

  • Sathyamoorthy, S., Tse, Y., Gordon, K., Houweling, D., & Coutts, D. (2019, July). BNR process intensification using membrane aerated biofilm reactors. In Nutrient Removal and Recovery Symposium 2019. Water Environment Federation.

    Google Scholar 

  • Scherer L, Pfister S (2016a) Global biodiversity loss by freshwater consumption and eutrophication from Swiss food consumption. Environ Sci Technol 50(13):7019–7028. https://doi.org/10.1021/acs.est.6b00740

    Article  CAS  Google Scholar 

  • Scherer L, Pfister S (2016b) Global water footprint assessment of hydropower. Renewable Energy 99:711–720

    Article  Google Scholar 

  • Schneider E, Cerqueira ACFP, Dezotti M (2011) MBBR evaluation for oil refinery wastewater treatment, with post-ozonation and BAC, for wastewater reuse. Water Sci Technol 63(1):143–148. https://doi.org/10.2166/wst.2011.024

    Article  CAS  Google Scholar 

  • Sehar, S., & Naz, I. (2016). Role of the biofilms in wastewater treatment. Microbial biofilms-importance and applications, 121–144.

    Google Scholar 

  • Shechter, R., Downing, L., Gordon, K., Nathan, N., Shefer, I., & Ben-Yosef, C. (2020, October). First Full-Scale Activated Sludge Retrofit Using a Spirally-Wound MABR: Results and Model Evaluation. In WEFTEC 2020. Water Environment Federation.

    Google Scholar 

  • Shokoohi, R., Asgari, G., Leili, M., Khiadani, M., Foroughi, M., & Sedighi Hemmat, M. (2017). Modelling of moving bed biofilm reactor (MBBR) efficiency on hospital wastewater (HW) treatment: a comprehensive analysis on BOD and COD removal. International journal of environmental science and technology, 14, 841–852. https://doi.org/10.1007/s13762-017-1255-9.

  • Singh, V., & Mittal, A. K. (2012). Characterization of biofilm of a rotating biological contactor treating synthetic wastewater. Water Science and Technology, 66(2), 429–437. https://doi.org/10.2166/wst.2012.221

  • Sinharoy, A., Baskaran, D., &Pakshirajan, K. (2019). A novel carbon monoxide fed moving bed biofilm reactor for sulfate rich wastewater treatment. Journal of environmental management, 249, 109402. https://doi.org/10.1016/j.jenvman.2019.109402

  • Sisti F, Ha DG, O’Toole GA, Hozbor D, Fernández J (2013) Cyclic-di-GMP signalling regulates motility and biofilm formation in Bordetella bronchiseptica. Microbiology 159(Pt 5):869

    Article  CAS  Google Scholar 

  • Srivastava D, Waters CM (2012) A tangled web: regulatory connections between quorum sensing and cyclic di-GMP. J Bacteriol 194(17):4485–4493

    Article  CAS  Google Scholar 

  • Sudarsanam SK, Neelanarayanan V, Umasankar V, Indranil S (2022) Application of AI based expert evaluation method in an automobile supplier selection problem. Materials Today: Proceedings 62:4991–4995

    Google Scholar 

  • Sun, H., Liu, H., Zhang, M., & Liu, Y. (2021). A novel single-stage ceramic membrane moving bed biofilm reactor coupled with reverse osmosis for reclamation of municipal wastewater to NEWater-like product water. Chemosphere, 268, 128836. https://doi.org/10.1016/j.chemosphere.2020.128836.

  • Sunner, N., Long, Z., Houweling, D., Monti, A., & Peeters, J. (2018, September). MABR as a low-energy compact solution for nutrient removal upgrades—results from a demonstration in the UK. In WEFTEC 2018 (pp. 1264–1281). Water Environment Federation.

    Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147(1):3–9

    Article  CAS  Google Scholar 

  • Talwar S, Sangal VK, Verma A (2018) Feasibility of using combined TiO2 photocatalysis and RBC process for the treatment of real pharmaceutical wastewater. Journal of Photochemistry and Photobiology A: Chemistry, 353, 263–270. https://doi.org/10.1016/j.jphotochem.2017.11.013

  • Terada A, Hibiya K, Nagai J, Tsuneda S, Hirata A (2003) Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment. Journal of bioscience and bioengineering, 95(2), 170–178. https://doi.org/10.1016/S1389-1723(03)80124-X

  • Tian H, Hu Y, Xu X, Hui M, Hu Y, Qi W, Xu H, Li B (2019) Enhanced wastewater treatment with high o-aminophenol concentration by two-stage MABR and its biodegradation mechanism. Bioresource technology, 289,121649. https://doi.org/10.1016/j.biortech.2019.121649

  • Toyofuku M, Inaba T, Kiyokawa T, Obana N, Yawata Y, Nomura N (2016) Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 80(1):7–12

    Article  CAS  Google Scholar 

  • Tsitouras A, Basu O, Al-Ghussain N, &Delatolla R (2020) Kinetic effects of anaerobic staging and aeration rates on sequencing batch moving bed biofilm reactors: carbon, nitrogen, and phosphorus treatment of cheese production wastewater. Chemosphere, 252, 126407. https://doi.org/10.1016/j.chemosphere.2020.126407

  • Underwood A, McMains C, Coutts D, Peeters J, Ireland J, Houweling D (2018) Design and startup of the first full-scale membrane aerated biofilm reactor in the United States. In WEFTEC 2018 (pp. 1282–1296). Water Environment Federation

    Google Scholar 

  • Wang S, Parajuli S, Sivalingam V, Bakke R (2019) Biofilm in moving bed biofilm process for wastewater treatment. Bacterial Biofilms 1(1):1–15

    Google Scholar 

  • Webb JS (2007) Differentiation and dispersal in biofilms, Book chapter in The Biofilm Mode of Life: Mechanisms and Adaptations, Horizon Biosci

    Google Scholar 

  • Wilkins M, Hall-Stoodley L, Allan RN, Faust SN (2014) New approaches to the treatment of biofilm-related infections. J Infect 69:S47–S52

    Article  Google Scholar 

  • Wu M, Luo J-H, Hu S, Yuan Z, Guo J (2019) Perchlorate bio-reduction in a methane-based membrane bioflm reactor in the presence and absence of oxygen. Water Res 157:572–578. https://doi.org/10.1016/j.watres.2019.04.008

    Article  CAS  Google Scholar 

  • Yang S, Yang F, Fu Z, Wang T, Lei R (2010) Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. J Hazard Mater 175(1–3):551–557. https://doi.org/10.1016/j.jhazmat.2009.10.040

    Article  CAS  Google Scholar 

  • Yang X, López-Grimau V, Vilaseca M, Crespi M (2020) Treatment of textile wastewater by CAS, MBR, and MBBR: a comparative study from technical, economic, and environmental perspectives. Water, 12(5), 1306. https://doi.org/10.3390/w12051306.

  • Yu Z, Li W, Tan S (2019) Real-time monitoring of the membrane biofouling based on spectroscopic analysis in a marine MBBR-MBR (moving bed biofilm reactor-membrane bioreactor) for saline wastewater treatment. Chemosphere 235:1154–1161. https://doi.org/10.1016/j.chemosphere.2019.07.005

    Article  CAS  Google Scholar 

  • Zhang H, Wang X, You M, Liu C (1999) Water-yield relations and water-use efficiency of winter wheat in the North China Plain. Irrig Sci 19(1):37

    Article  CAS  Google Scholar 

  • Zhang X, Li J, Yu Y, Xu R, Wu Z (2016) Biofilm characteristics in natural ventilation trickling filters (NVTFs) for municipal wastewater treatment: Comparison of three kinds of biofilm carriers. Biochem Eng J 106:87–96. https://doi.org/10.1016/j.bej.2015.11.009

    Article  CAS  Google Scholar 

  • Zhang X, Zhang, Z, Liu Y, Ngo HH, Guo W, Wang H, Zhang D (2020) Impacts of sulfadiazine on the performance and membrane fouling of a hybrid moving bed biofilm reactor-membrane bioreactor system at different C/N ratios. Bioresource technology, 318, 124–180. https://doi.org/10.1016/j.biortech.2020.124180.

  • Zhang Y, He Y, Sakowski EG, Preheim SP (2021) Influence of Simplified Microbial Community Biofilms on Bacterial Retention in Porous Media under Conditions of Stormwater Biofiltration. Microbiology Spectrum 9(2):e01105-e1121

    Article  CAS  Google Scholar 

  • Zhao Y, Zhuang X, Ahmad S, Sung S, Ni SQ (2020) Biotreatment of high-salinity wastewater: current methods and future directions. World J Microbiol Biotechnol 36:1–11. https://doi.org/10.1007/s11274-020-02815-4

    Article  CAS  Google Scholar 

  • Zinatizadeh AAL, Ghaytooli E (2015) Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (MBBR): process modeling and optimization. J Taiwan Inst Chem Eng 53:98–111. https://doi.org/10.1016/j.jtice.2015.02.034

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adebayo Elijah Adegoke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adegoke, A.E., Abel, O.M., Ikechukwuka, E.M., Opeyemi, A.O.M., Nifemi, A.O. (2023). Microbial Biofilm Reactor for Sustainable Wastewater Treatment. In: Mathuriya, A.S., Pandit, S., Singh, N.K. (eds) Green Technologies for Industrial Waste Remediation. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-46858-2_14

Download citation

Publish with us

Policies and ethics

Navigation