The Internal Topology of Rocks

  • Chapter
  • First Online:
Statistical Rock Physics

Chapter Highlights

We discuss the modern mathematical tools for studying the topology of pore space. In Sect. 3.1. Minkowski functionals are introduced through the paradigm of Mark Kac (Kac, Am Math Monthly 73:1–24, 1966) ‘Can one hear the shape of a drum?’. Euler characteristics, a powerful tool to study connectivity is treated in 3.2. The elegant and sophisticated research tool, Persistent Homology, is built up in a series of easy-to-follow steps in 3.3. The abstract constructions are illustrated with practical examples, and there are copious references in the text and in Tables (3.1, 3.4, 3.11) for their use in Petrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboufoul M, Garcia A (2017) Factors affecting hydraulic conductivity of asphalt mixture. Mater Struct 50:1–16

    Article  Google Scholar 

  • Aktas ME, Akbas E, Fatmaoui AE (2019) Persistence homology of networks: methods and applications. Appl Netw Sci 4(1):1–28

    Article  Google Scholar 

  • Alexandroff P, Hilbert D (1932) Einfachste Grundbegriffe der Topologie. Julius Springer, Berlin

    Book  Google Scholar 

  • Alqahtani N, Armstrong RT, Mostaghimi P (2018) Deep learning convolutional neural networks to predict porous media properties. SPE Asia Pacific Oil and Gas Conference and Exhibition.

    Google Scholar 

  • Amorim E, Moreira RA, Santos FAN (2019) The Euler characteristic and topological phase transitions in complex systems. J Phys Complex 3:025003

    Google Scholar 

  • Andreeva MV, Kalyuzhnyuk AV, Krutko VV, Russkikh NE, Taimanov IA (2021) Representative elementary volume via averaged scalar Minkowski functionals. ar**v: 2008.03727v2

    Google Scholar 

  • Andrew M (2019) Comparing organic-hosted and intergranular pore networks: topography and topology in grains, gaps and bubbles. In: Dowey P, Osborne M, Volk H (eds) Application of analytical techniques to petroleum systems, vol 484. Geological Society, London, Special Publications, pp 241–253

    Google Scholar 

  • Archie G (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(1):54–62

    Article  Google Scholar 

  • Armstrong RT, McClure JE, Robins V, Liu Z, Arns CH, Schlüter S, Berg S (2018) Porous media characterization using Minkowski functionals: theories, applications and future directions. Transp Porous Media 2018:1–31

    Google Scholar 

  • Arns CH (2002) The influence of morphology on physical properties of reservoir rocks. Doctor of Philosophy Thesis in Petroleum Engineering. School of Petroleum Engineering. The University of New South Wales

    Google Scholar 

  • Arns CH, Knackstedt MA, Pinczewski WV, Mecke KR (2001) Euler-Poincaré characteristics of classes of disordered media. Phys Rev E 63(031112):1–13

    Google Scholar 

  • Arns CH, Knackstedt MA, Mecke KR (2002) Characterising the morphology of disordered materials. In: Mecke KR, Stoyan D (eds) Lecture notes in physics, vol. 600. Springer-Verlag, Berlin-Heidelberg, pp 37–74

    Google Scholar 

  • Arns CH, Knackstedt MA, Pinczewski WV (2002a) Vp: Vs relationships for model sandstones. Geophys Res Lett 29(8):44-1–44-4

    Google Scholar 

  • Bachmat Y, Bear J (1986) Macroscopic modelling of transport phenomena in porous media. 1: The continuum approach. Transp Porous Media 1:213–240

    Article  CAS  Google Scholar 

  • Bakke S, Øren P (1997) 3-d pore-scale modeling of sandstones and flow simulations in the pore networks. SPE J 2:136–149

    Article  Google Scholar 

  • Bazaikin Y, Gurevich B, Iglauer S, Khachkova T, Kolyukhin D, Lebedev M, Lisitsa V, Reshetova G (2017) Effect of ct image size and resolution on the accuracy of rock property estimates. J Geophys Res Solid Earth 122:3635–3647

    Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Parts 1–2. American Elsevier Publishing Company, New York

    Google Scholar 

  • Bengio Y (2009) Learning deep architectures in AI. Found Trends Mach Learn 2(1):1–127

    Article  Google Scholar 

  • Beran M (1965) Use of the variational approach to determine bounds for the effective permittivity in random media. Nuovo Cim 38:771–782

    Article  Google Scholar 

  • Berchtold MA (2007) Modelling of random porous media using Minkowski-Functionals. Doctoral Thesis. ETH, Zürich

    Google Scholar 

  • Berg CF (2014) Permeability description by characteristic length, tortuosity, constriction and porosity. Transp Porous Media 103:381–400

    Article  CAS  Google Scholar 

  • Berryman JG, Blair SC (1986) Use of digital image analysis to estimate fluid permeability of porous materials. Application of the two-point correlation function. J Appl Phys 60(6):1930–1938

    Google Scholar 

  • Blasquez I, Poiraudeau J-F (2003) Efficient processing of Minkowski functionals on a 3d binary image using binary decision diagrams. J WSCG 11(No1). ISSN 1213–6972. WSCG’2003, Feb 3–7, 2003, Plzen, Czech Republic

    Google Scholar 

  • Bobrowski O, Skraba P (2020) Homological percolation and the euler characteristic. Phys Rev E 101:032304

    Google Scholar 

  • Boelens MP, Tchelepi HA (2021) QuantImPy: Minkowski functionals and functions with Python. SoftwareX 16:100823

    Article  Google Scholar 

  • Borges J, Pires L, Cássaro F, Roque W, Heck R, Rosa J, Wolf F (2018) X-ray microtomography analysis of representative elementary volume (REV) of soil morphological and geometrical properties. Soil and Tillage Research https://doi.org/10.1016/j.still.2018.05.004

  • Bubenik P (2009) Persistent homology of functions. (Ppt presentation, Cleveland State University, August 4, 2009). https://academic.csuohio.edu/bubenik_p/talks/functions.pdf

  • Carlsson G (2009) Topology and data. Am Math Soc Bull New Series 46(2):255–308

    Google Scholar 

  • Carlsson G, Zomorodian A, Collins A, Guibas LJ (2005) Persistence barcodes for shapes. Int J Shape Model 11(02):149–187

    Article  Google Scholar 

  • Carman PC (1936) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166

    Google Scholar 

  • Chazal F, Michel B (2021) An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists Front. Artif. Intell., Sec. Machine Learning and Artificial Intelligence vol. 4

    Google Scholar 

  • Chen L, Rong Y (2010) Digital topological method for computing genus and the Betti numbers. Topol Appl 157:1931–1936

    Google Scholar 

  • Cohen-Steiner D, Edelsbrunner H, Harer J (2007) Stability of persistence diagrams. Discret Comput Geom 37(1):103–120

    Article  Google Scholar 

  • Cohen-Steiner D, Edelsbrunner H, Harer J, Mileyko Y (2010) Lipschitz functions have Lp-stable persistence. Found Comput Math 10:127–139

    Article  Google Scholar 

  • Costa A (2006) Permeability-porosity relationship: a re-examination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys Res Lett 33:L02318

    Article  Google Scholar 

  • Coxeter HSM (1973) Regular polytopes, 3rd edn. Dover Publication Inc., New York

    Google Scholar 

  • Dahrabou A, Viseur S, Gonzalez-Lorenzo A, Rohmer J, Bac A, Real P, Mari J-L, Audigane P (2016) Topological comparisons of fluvial reservoir rock volumes using betti numbers: application to CO2 storage uncertainty analysis. In: Bac A, Mari JL (eds) Computational topology in image context. CTIC 2016. Lecture notes in computer science, vol 9667. Springer, Cham, pp 101–112

    Google Scholar 

  • Daigle H (2016) Application of critical path analysis for permeability prediction in natural porous media. Adv Water Resour 96:43–54

    Article  Google Scholar 

  • Delesse MA (1847) Procédé mécanique pour déterminer la composition chimique des roches. CR Acad Sci (Paris) 25:545–565

    Google Scholar 

  • Delgado-Friedrichs O, Robins V, Sheppard A (2014) Morse theory and persistent homology for topological analysis of 3D images of complex materials. In: Proceedings of 2014 IEEE international conference on image processing (ICIP), pp 4872–4876

    Google Scholar 

  • Delgado-Friedrichs O, Robins V, Sheppard A (2015) Skeletonization and partitioning of digital images using discrete Morse theory. IEEE Trans Pattern Anal Mach Intell 37(3):654–666

    Article  Google Scholar 

  • Dohnalik M, Jarzyna J (2015) Determination of reservoir properties through the use of computed X-ray microtomography—eolian sandstone examples. Geol Geophys Environ 41(3):223–248

    Google Scholar 

  • Edelsbrunner H, Harer J (2008) Persistent homology—a survey. Contemp Math 453:257–282

    Article  Google Scholar 

  • Edelsbrunner H, Harer JL (2010) Computational topology: an introduction. AMS Press, Providence

    Google Scholar 

  • Edelsbrunner H, Letscher D, Zomorodian A (2002) Topological persistence and simplification. Discret Comput Geom 28(4):511–533

    Article  Google Scholar 

  • Epstein N (1989) On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem Eng Sci 44:777–779

    Article  CAS  Google Scholar 

  • Euler L (1758) Elementa doctrinae solidorum. Novi Commentarii Acad. Scientiarum Petropolitanae 109–140

    Google Scholar 

  • Fabbri R, Costa LDF, Torelli JC, Bruno OM (2008) 2D Euclidean distance transform algorithms: a comparative survey. ACM Comput Surv 40(1):2-1–2-44

    Google Scholar 

  • Feng M, Porter MA (2021) Persistent homology of geospatial data: a case study with voting. SIAM Rev 63(1):67–99

    Google Scholar 

  • Flegg HG (1974) From geometry to topology. The English Universities Press Ltd., London

    Google Scholar 

  • Garboczi EJ (1990) Permeability, diffusivity, and microstructural parameters: a critical review. Cem Concr Res 20:591–601

    Article  CAS  Google Scholar 

  • Ghanbarian B, Hunt AG, Ewing RP, Sahimi M (2013) Tortuosity in porous media: a critical review. Soil Sci Soc Am J 77:1461–1477

    Article  CAS  Google Scholar 

  • Ghanbarian B, Hunt AG, Ewing RP, Skinner TE (2014) Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories. Geophys Res Lett 41(11):3884–3890

    Article  Google Scholar 

  • Ghrist R (2008) Barcodes: the persistent topology of data. Bull Am Math Soc 45:61–75

    Article  Google Scholar 

  • Ghrist RW (2014) Elementary applied topology, vol 1, 10th edn. Createspace, Seattle

    Google Scholar 

  • Gilmanov R, Kalyuzhnyuk A, Taimanov I, Yakovlev A (2018) Topological characteristics of digital models of geological core. In: 2nd international cross-domain conference for machine learning and knowledge extraction (CD-MAKE), Hamburg, Germany, pp 273–281

    Google Scholar 

  • Gong L, Nie L, Xu Y (2020) Geometrical and topological analysis of pore space in sandstones based on X-ray computed tomography. Energies 13:3774

    Google Scholar 

  • Hadwiger H (1957) Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin

    Book  Google Scholar 

  • Haruzi P, Katsman R, Halisch M, Waldmann N, Spiro B (2021) Supplement of Benchmark study using a multi-scale, multi-methodological approach for the petrophysical characterization of reservoir sandstones. Suppl Solid Earth 12:665–689

    Google Scholar 

  • Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10(4):343–352

    Article  CAS  Google Scholar 

  • Hatcher A (2002) Algebraic topology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hausmann J-C (1995) On the Vietoris–Rips complexes and a cohomology theory for metric spaces. In: Prospects in topology: proceedings of a conference in honour of william browder, annals of mathematics studies, vol 138. Princeton University Press, Princeton, NJ, pp 175–188

    Google Scholar 

  • Felix H (1914) Grundzüge der Mengenlehre. Veit & Co, Leipzig

    Google Scholar 

  • Herring AL, Harper EJ, Andersson L, Sheppard A, Bay BK, Wildenschild D (2013) Effect of fluid topology on residual nonwetting phase trap**: implications for geologic CO2 sequestration. Adv Water Resour 62:47–58

    Article  CAS  Google Scholar 

  • Herring AL, Andersson L, Schlüter S, Sheppard A, Wildenschild D (2015) Efficiently engineering pore-scale processes: the role of force dominance and topology during nonwetting phase trap** in porous media. Adv Water Resour 79:91–102

    Article  CAS  Google Scholar 

  • Herring AL, Robins V, Sheppard AP (2019) Topological persistence for relating microstructure and capillary fluid trap** in sandstones. Water Resour Res 55(1):555–573

    Article  Google Scholar 

  • Huber N (2018) Connections between topology and macroscopic mechanical properties of three-dimensional open-pore materials. Front Mater 5:69

    Google Scholar 

  • Hyde ST, Barnes IS, Ninham BW (1990) Curvature energy of surfactant interfaces confined to the plaquettes of a cubic lattice. Langmuir 6:1055–1062

    Article  CAS  Google Scholar 

  • Ioannidis MA, Chatzis I (2000) On the geometry and topology of 3D stochastic porous media. J Colloid Interface Sci 229:323–334

    Article  CAS  Google Scholar 

  • Ioannidis MA, Lang E (1998) Microgeometry and topology of statistically homogeneous porous media. Trans Ecol Environ 17:223–230

    Google Scholar 

  • Ivonin D, Kalnin T, Grachev E, Shein E (2020) Quantitative analysis of pore space structure in dry and wet soil by integral geometry methods. Geosciences 10(9):365

    Google Scholar 

  • Jiang F, Tsuji T, Shirai T (2018) Pore geometry characterization by persistent homology theory. Water Resour Res 54(6):4150–4163

    Article  Google Scholar 

  • Jiang H, Arns CH (2020) A fast FFT method for 3D pore-scale rock-ty** of heterogeneous rock samples via Minkowski functionals and hydraulic attributes. Web Conf 146: 04002 (2020) SCA 2019

    Google Scholar 

  • Kac M (1966) Can one hear the shape of a drum? Am Math Monthly 73:1–24

    Article  Google Scholar 

  • Kaczynski T, Mischaikow K, Mrozek M (2006) Computational homology, vol 157. Springer Science Business Media

    Google Scholar 

  • Katz A, Thompson A (1986) Quantitative prediction of permeability in porous rock. Phys Rev B34(11):8179

    Article  Google Scholar 

  • Kellerer HG (1984) Minkowski functionals of Poisson processes. Z Wahr Verw Gebiete 67:3–84

    Article  Google Scholar 

  • Khachkova TS, Bazaikin YV, Lisitsa VV (2020) Use of the computational topology to analyze the pore space changes during chemical dissolution. Numer Methods Program 21:41–55

    Google Scholar 

  • Khanamiri HH, Torsæter O (2018) Fluid topology in pore scale two-phase flow imaged by synchrotron X-ray microtomography. Water Resour Res 54:1905–1917

    Article  CAS  Google Scholar 

  • Kim J (2012) Phase-field models for multi-component fluid flows. Commun Comput Phys 12:613–661

    Article  Google Scholar 

  • Kirkpatrick S (1973) Percolation and conduction. Rev Modern Phys 45(4):574–588

    Google Scholar 

  • Koestel J, Larsbo M, Jarvis N (2020) Scale and REV analyses for porosity and pore connectivity measures in undisturbed soil. Geoderma 366:114206

    Article  Google Scholar 

  • Kondic L, Goullet A, O’Hern CS, Kramar M, Mischaikow K, Behringer RP (2012) Topology of force networks in compressed granular media. Europhys Lett 97(5):54001

    Article  Google Scholar 

  • Kong TY, Rosenfeld A (1989) Digital topology: introduction and survey. Comput Vision, Graph Image Process 48(3):357–393

    Article  Google Scholar 

  • Konkle SF, Moran PJ, Hamann B, Joy KI (2003) Fast methods for computing isosurface topology with Betti numbers. In: Post F, Nielsen GM, Bonneau GP (eds) Data visualization: the state of the art. proc. Dagstuhl seminar on scientific visualization. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 363–376

    Google Scholar 

  • Korvin G (1982) Axiomatic characterization of the general mixture rule. Geoexploration 19(4):267–276

    Article  Google Scholar 

  • Korvin G (1992) Fractal models in the earth sciences. Elsevier, Amsterdam

    Google Scholar 

  • Korvin G (2016) Permeability from microscopy: review of a dream. Arab J Sci Eng 41(6):2045–2065

    Article  Google Scholar 

  • Korvin G, Oleschko K, Abdulraheem A (2014) A simple geometric model of sedimentary rock to connect transfer and acoustic properties. Arab J Geosci 7:1127–1138

    Google Scholar 

  • Korvin G, Sterligov B, Oleschko K, Cherkasov S (2013) Entropy of shortest distance (ESD) as pore detector and pore-shape classifier. Entropy 15(6):2384–2397

    Article  Google Scholar 

  • Kozeny J (1927) Über kapillare Leitung des Wassers im Boden. Sitzungsber Akad Wiss (Wien) 136:271–306

    Google Scholar 

  • Kramár M, Goullet A, Kondic L, Mischaikow K (2013) Persistence of force networks in compressed granular media. Phys Rev E 87:042207

    Article  Google Scholar 

  • Kramár M, Goullet A, Kondic L, Mischaikow K (2014a) Evolution of force networks in dense particulate media. Phys Rev E 90:052203

    Article  Google Scholar 

  • Kramár M, Goullet A, Kondic L, Mischaikow K (2014b) Quantifying force networks in particulate systems. Phys D 283:37–55

    Article  Google Scholar 

  • Legland D, Kiêu K, Devaux M-F (2011) Computation of Minkowski measures on 2D and 3D binary images. Image Anal Stereol 26:83

    Article  Google Scholar 

  • Lehmann P, Berchtold M, Ahrenholz B, Tölke J, Kaestner A, Krafczyk M, Flühler H, Künsch H (2008) Impact of geometrical properties on permeability and fluid phase distribution in porous media. Adv Water Resour 31(9):1188–1204

    Article  Google Scholar 

  • Li M, Tang YB, Bernabé Y, Zhao JZ, Li XF, Bai XY, Zhang LH (2015) Pore connectivity, electrical conductivity, and partial water saturation: network simulations. J Geoph Res Solid Earth 120(6):4056–4068

    Google Scholar 

  • Likos CN, Mecke KR, Wagner H (1995) Statistical morphology of random interfaces in microemulsions. J Chem Phys 102:9350–9361

    Article  CAS  Google Scholar 

  • Lisitsa V, Bazaikin Y, Khachkova T (2020) Computational topology-based characterization of pore space changes due to chemical dissolution of rocks. Appl Math Model 88:21–37

    Article  Google Scholar 

  • Liu Z, Herring AVR, Armstrong R (2017) Prediction of permeability from Euler characteristic of 3D images. The International Symposium of the Society of Core Analysts

    Google Scholar 

  • Liu Z, Herring A, Arns C, Berg S, Armstrong RT (2017b) Pore-scale characterization of two-phase flow using integral geometry. Transp Porous Media 118(1):99–117

    Article  CAS  Google Scholar 

  • Lozano-Durán A, Borrell G (2016) Algorithm 964: an efficient algorithm to compute the genus of discrete surfaces and applications to turbulent flows. ACM Trans Math Softw 42(4):Article 34

    Google Scholar 

  • Macdonald IG (1995) Symmetric functions and hall polynomials, 2nd edn. Clarendon Press, Oxford

    Book  Google Scholar 

  • Marafini E, La Rocca M, Fiori A, Battiato I, Prestininzi P (2020) Suitability of 2D modelling to evaluate flow properties in 3D porous media. Transp Porous Media 134:315–329

    Google Scholar 

  • Martys NS, Torquato S, Bentz DP (1994) Universal scaling of fluid permeability for sphere packings. Phys Rev E 50:403

    Article  CAS  Google Scholar 

  • Matheron G (1975) Random sets and integral geometry. Wiley, New York

    Google Scholar 

  • MATHWORKS (2022) 3-D volumetric image processing—MATLAB & Simulink. Available online: https://www.mathworks.com/help/images/3d-volumetric-image-processing.html?s_tid=CRUX_lftnav

  • McClure JE, Armstrong RT, Berrill MA, Schlüter S, Berg S, Gray WG, Miller CT (2018) A geometric state function for two-fluid flow in porous media. Phys Rev Fluids 3:084306

    Article  Google Scholar 

  • Mecke KR (1998) Integral geometry and statistical physics. Int J Mod Phys B 12:861–899

    Article  Google Scholar 

  • Mecke KR (2000) Additivity, convexity, and beyond: applications of Minkowski functionals in statistical physics. In: Mecke KR, Stoyan D (eds) Statistical physics—the art of analyzing and modeling spatial structures. Lecture notes in physics, vol 554. Springer, Berlin, pp 111–184

    Google Scholar 

  • Mecke KR (2001) Exact moments of curvature measures in the Boolean Model. J Stat Phys 102(5/6):1343–1381

    Article  Google Scholar 

  • Mecke K, Arns C (2005) Fluids in porous media: a morphometric approach. J Phys Condens Matter 17(9):503–534

    Google Scholar 

  • Mecke KR, Seyfried A (2002) Strong dependence of percolation thresholds on poly-dispersity. Europhys Lett 58:28–34

    Article  CAS  Google Scholar 

  • Mecke KR, Stoyan D (eds) (2000) Statistical physics—the art of analyzing and modeling spatial structures. Lecture notes in physics, vol 554. Springer, Berlin

    Google Scholar 

  • Mecke K, Wagner H (1991) Euler characteristic and related measures for random geometric sets. J Stat Phys 64(3–4):843–850

    Article  Google Scholar 

  • Mecke KR, Buchert T, Wagner H (1994) Robust morphological measures for large-scale structure in the Universe. Astron Astrophys 288:697–704

    Google Scholar 

  • Michielsen K, De Raedt H (2001) Integral-geometry morphological image analysis. Phys Rep General Maths 347(2001):461–538

    CAS  Google Scholar 

  • Miles RE (1976) Estimating aggregate and overall characteristics from thick sections by transmission microscopy. J Microscopy 107(3):227–233

    Article  Google Scholar 

  • Milton GW (1982) Bounds on the elastic and transport properties of two-component composites. J Mech Phys Solids 30(3):177–191

    Article  Google Scholar 

  • Moon C, Mitchell SA, Heath JE, Andrew M (2019) Statistical inference over persistent homology predicts fluid flow in porous media. Water Resour Res 55:9592–9603

    Article  Google Scholar 

  • Munch E (2017) A user’s guide to topological data analysis. J Learn Anal 4(2):47–61

    Google Scholar 

  • Munkres JR (1993) Elements of algebraic topology. Addison Wesley, Menlo Park, CAL

    Google Scholar 

  • Nair P, Mühlbauer S, Roy S, Pöschel T (2021) Can Minkowski tensors of a simply connected porous microstructure characterize its permeability? Phys Fluids 33: 042010

    Google Scholar 

  • Nakahara M (2003) Geometry, topology and physics. Institute of Physics Publishing, Bristol-Philadelphia

    Google Scholar 

  • Nishiyama N, Yokoyama T (2017) Permeability of porous media: role of the critical pore size. J Geophys Res Solid Earth 122:6955–6971

    Article  Google Scholar 

  • Noiriel C, Gouze P, Bernard D (2004) Investigation of porosity and permeability effects from microstructure changes during limestone dissolution. Geophys Res Lett 31:L24603

    Article  Google Scholar 

  • Ohser J, Mücklich F (2000) Statistical analysis of microstructure in materials science. John Wiley and Sons Ltd., New York

    Google Scholar 

  • Ohser J, Nagel W, Schladitz K (2002) The Euler number of discretized sets—on the choice of adjacency in homogeneous lattices. In: Mecke KR, Stoyan D (eds) Morphology of condensed matter. Springer, Heidelberg

    Google Scholar 

  • Joachim O, Nagel W, Schladitz K (2003) The Euler number of discretised sets—surprising results in three dimensions. Image Anal Stereol 22:11–19

    Google Scholar 

  • Okuma G, Kadowaki D, Hondo T, Tanaka S, Wakai F (2017) Interface topology for distinguishing stages of sintering. Sci Rep 7:11106

    Google Scholar 

  • Okuma G, Tanaka S, Wakai F (2022) Domain coarsening in viscous sintering as a result of topological pore evolution. J Eur Ceramic Soc 42:729–733

    Google Scholar 

  • Oleschko K (1998–1999) Delesse principle and statistical fractal sets: Part 1. Dimensional equivalents. Soil Tillage Res 49:255–266; Part 2. Unified fractal model for soil porosity. Ibid 52:247–257

    Google Scholar 

  • Ott H, Kharrat A, Borji M, Clemens T, Arnold P (2019) Screening of EOR potential on the pore scale by statistical and topological means. SCA 2019-011

    Google Scholar 

  • Ott H, Kharrat A, Borji M, Arnold P (2020) Fluid-phase topology of complex displacements in porous media. Phys Rev Res 2:023240

    Article  CAS  Google Scholar 

  • Otter N, Porter MA, Tillmann U, Grindrod P, Harrington HA (2017) A roadmap for the computation of persistent homology. EPJ Data Sci 6:1–38

    Article  Google Scholar 

  • Øren PE, Bakke S, Arntzen OJ (1998) Extending predictive capabilities to network models. SPE J 3:324–336

    Article  Google Scholar 

  • Papadopoulos L, Porter MA, Daniels KE, Bassett DS (2018) Network analysis of particles and grains. J. Complex Netw 6:485–565

    Article  Google Scholar 

  • Patania A, Vaccarino F, Petri G (2017) Topological analysis of data. EPJ Data Sci 6(1):1–6

    Article  Google Scholar 

  • Pérez-Rosales C (1982) On the relationship between formation resistivity factor and porosity. SPE J 22(04):531–536

    Google Scholar 

  • Pleijel A (1954) A study of certain Green’s functions with applications in the theory of vibrating membranes. Ark Mat 2(1954):553–539

    Article  Google Scholar 

  • Porter M, Wildenschild D, Grant G, Gerhard J (2010) Measurement and prediction of the relationship between capillary pressure, saturation, and interfacial area in a NAPL-water-glass bead system. Water Resour Res 46:W08512

    Article  Google Scholar 

  • Pothuaud L, Rietbargen BV, Mosekilde L, Beuf O, Levitz P, Benhamou CL, Majumdar S (2002) Combination of topological parameters and bone volume fraction better predicts the mechanical properties of trabecular bone. J Biomech 35:1091–1099

    Article  Google Scholar 

  • Prokhorov D, Lisitsa V, Bazaikin Y (2021) Digital image reduction for analysis of topological changes in pore space during chemical dissolution. International Conference on Computational Science ICCS 2021, pp 382–393

    Google Scholar 

  • Protter MH (1987) Can one hear the shape of a drum? Revisited. SIAM Rev 29(2):185–197

    Google Scholar 

  • Renshaw CE (1995) On the relationship between mechanical and hydraulic apertures in rough-walled fractures. J Geophys Res 100:629–636

    Google Scholar 

  • Robins V (1999) Towards computing homology from finite approximations. Topol Proc 24:503–532

    Google Scholar 

  • Robins V, Wood PJ, Sheppard AP (2011) Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans Pattern Anal Mach Intell 33(8):1646–1658

    Article  Google Scholar 

  • Robins V, Saadatfar M, Delgado-Friedrichs O, Sheppard AP (2016) Percolating length scales from topological persistence analysis of micro-CT images of porous materials. Water Resour Res 52(1):315–329

    Article  Google Scholar 

  • Robinson J, Slater L, Johnson T, Shapiro A, Tiedeman C, Ntarlagiannis D, Johnson C, Day-Lewis F, Lacombe P, Imbrigiotta T, Lane J (2016) Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography. Groundwater 54(2):186–201

    Article  CAS  Google Scholar 

  • Roy S, Tarafdar S (1997) Archie’s law from a fractal model for porous rocks. Phys Rev 55:8038–8041

    Article  CAS  Google Scholar 

  • Saadatfar M, Takeuchi H, Robins V, Francois N, Hiraoka Y (2017a) Pore configuration landscape of granular crystallization. Nat Commun 8:15082

    Article  CAS  Google Scholar 

  • Saadatfar M, Takeuchi H, Hanifpour M, Robins V, Francois N, Hiraokam Y (2017b) Granular compaction and the topology of pore deformation. EPJ web of conferences, powders & grains, p 16009

    Google Scholar 

  • Sahimi M (1985) Flow and transport in porous media and fractured rock: from classical methods to modern approaches. VCH, New York

    Google Scholar 

  • Santaló LA (1976) Integral geometry and geometric probability. Addison-Wesley, Reading, MA

    Google Scholar 

  • Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The Image J ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529

    Article  CAS  Google Scholar 

  • Schlüter S, Berg S, Rücker M, Armstrong R, Vogel HJ, Hilfer R, Wildenschild D (2016) Pore-scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media. Water Resour Res 52(3):2194–2205

    Article  Google Scholar 

  • Schmalzing J, Kerscher M, Buchert T (1995) Minkowski functionals in cosmology. astro-ph/9508154(05 OCT 1995): 1–10

    Google Scholar 

  • Schmidhuber J (2015) Deep learning in neural networks: ano. Neural Netw 61:85–117

    Article  Google Scholar 

  • Scholz C (2014) Fluss und Transport in mikrofluidischen porösen Medien . Von der Fakultät Mathematik und Physik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

    Google Scholar 

  • Scholz C, Wirner F, Götz J, Rüde U, Schröder-Turk GE, Mecke K, Bechinger C (2012) Permeability of porous materials determined from the Euler characteristic. Phys Rev Lett 109:264504

    Article  Google Scholar 

  • Scholz C, Wirner F, Klatt M, Hirneise D, Schröder-Turk G, Mecke K, Bechinger C (2015) Direct relations between morphology and transport in Boolean models. Phys Rev E 92:043023

    Article  Google Scholar 

  • Schröder-Turk GE, Mickel W, Kapfer SC, Klatt MA, Schaller FM, Hoffmann MJF, Kleppmann N, Armstrong P, Inayat A, Hug D, Reichelsdorfer M, Peukert W, Schwieger W, Mecke K (2011) Minkowski tensor shape analysis of cellular, granular and porous structures. Adv Mater 23:2535–2553

    Article  Google Scholar 

  • Schröder-Turk G, Mickel W, Kapfer S, Schaller F, Breidenbach B, Hug D, Mecke K (2013) Minkowski tensors of anisotropic spatial structure. New J Phys 15(8):083028

    Google Scholar 

  • Schwartz LM, Martys N, Bentz DP, Garboczi EJ, Torquato S (1993) Cross-property relations and permeability estimation in model porous media. Phys Rev E 48:4584–4591

    Article  CAS  Google Scholar 

  • Sen PN, Straley C, Kenyon WE (1990) Surface-to-volume ratio, charge density, nuclear magnetic relaxation, and permeability in clay-bearing sandstones. Geophysics 55:61–69

    Article  Google Scholar 

  • Serra J (1982) Image analysis and mathematical morphology. Academic Press, London

    Google Scholar 

  • Slotte PA, Berg CF, Khanamiri HH (2020) Predicting resistivity and permeability of porous media using Minkowski functionals. Transp Porous Media 131:705–722

    Article  Google Scholar 

  • Smalley JJ (1967) A simple model of a diagenetic system. Sedimentology 8:27–33

    Article  Google Scholar 

  • Soares JA, Rayane P, de Lopes A (2017) A model for permeability of carbonate rocks based on pore connectivity and pore size. In: 15th international congress of the brazilian geophysical society held in Rio de Janeiro, Brazil, 31 July to 3 Aug 2017

    Google Scholar 

  • Sossa-Azuela JH, Cuevas-Jiménez EB, Zaldivar-Navarro D (2011) Alternative way to compute the Euler number of a binary image. J Appl Res Technol 9(3):335–341

    Article  Google Scholar 

  • Stauffer D, Aharony A (1992) Introduction to percolation theory, 2nd edn. Taylor and Francis, London

    Google Scholar 

  • Stoyan D, Kendall WS, Mecke J (1989) Stochastic geometry and its applications. Akademie Verlag, Berlin

    Google Scholar 

  • Sudakov O, Burnaev E, Koroteev D (2019) Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks. Comput Geosci 127:91–98

    Article  Google Scholar 

  • Sun WC, Andrade JE, Rudnicki JW (2011) Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability. Int J Numer Methods Eng 88:1260–1279

    Article  Google Scholar 

  • Suzuki A, Miyazawa M, Okamoto A, Shimizu H, Obayashi I, Hiraoka Y, Tsuji T, Kang PK, Ito T (2020) Inferring fracture forming processes by characterizing fracture network patterns with persistent homology. Comput Geosci 143:104550

    Article  CAS  Google Scholar 

  • Suzuki A, Miyazawa M, Minto JM, Tsuji T, Obayashi I, Hiraoka Y, Ito T (2021) Flow estimation solely from image data through persistent homology analysis. Sci Rep 11(1):1–13

    Article  Google Scholar 

  • Takahashi T, Clark AH, Majmudar T, Kondic L (2018) Granular response to impact: topology of the force networks. Phys Rev E 97:012906

    Article  CAS  Google Scholar 

  • Thakur MM, Kim F, Penumadu D, Herring A (2021) Pore space and fluid phase characterization in round and angular partially saturated sands using radiation-based tomography and persistent homology. Transp Porous Media 137:131–155

    Article  Google Scholar 

  • Thovert J-F, Wary F, Adler PM (1990) Thermal conductivity of random media and regular fractals. J Appl Phys 68:3872–3883

    Article  Google Scholar 

  • Thovert J-F, Yousefian F, Spanne P, Jacquin CG, Adler PM (2001) Grain reconstruction of porous media: Application to a low-porosity Fontainebleau sandstone. Phys Rev E 63:061307

    Article  CAS  Google Scholar 

  • Tiab D, Donaldson EC (2004) Petrophysics: theory and practice of measuring reservoir rock and fluid transport properties. Elsevier, Oxford, UK

    Google Scholar 

  • Torquato S (1984) Bulk properties of two-phase disordered media. I. Cluster expansion for the effective dielectric constant of dispersions of penetrable spheres. J Chem Phys 81(11):5079–5088

    Google Scholar 

  • Torquato S (2002a) Statistical description of microcstructures. Ann Rev Mater Res 32:77–111

    Article  CAS  Google Scholar 

  • Torquato S (2002b) Random heterogeneous materials: microstructure and macroscopic properties. Interdisciplinary applied mathematics, vol 16. Springer, New York

    Google Scholar 

  • Torquato S, Stell G (1983) Microstructure of two-phase random media. III. the n-point matrix probability functions for fully penetrable spheres. J Chem Phys 79:1505–1510

    Article  CAS  Google Scholar 

  • Tsuji T, Jiang F, Suzuki A, Shirai T (2018) Mathematical modeling of rock pore geometry and mineralization: applications of persistent homology and random walk. In: Anderssen R, Broadbridge P, Fukumoto Y, Kajiwara K, Simpson M, Turner I (eds) Agriculture as a metaphor for creativity in all human endeavors. Mathematics for Industry, vol 28. Springer, Singapore, pp 95–109

    Google Scholar 

  • Ushizima DM, Morozov D, Weber GH, Bianchi AGC, Sethian JA, Wes Bethel E (2012) Augmented topological descriptors of pore networks for material science. IEEE Trans Visual Comput Graphics 18(12):2041–2050

    Article  CAS  Google Scholar 

  • Vejdemo-Johansson M, Skraba P (2016) Topology, big data and optimization. In: Emrouznejad A (ed) Big data optimization: recent developments and challenges. Springer, Cham, Switzerland, pp 147–176

    Chapter  Google Scholar 

  • Vietoris L (1927) Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Math Ann 97:454–472

    Article  Google Scholar 

  • Vogel HJ (1997a) Digital unbiased estimation of the Euler-Poincaré characteristic in different dimensions. Acta Stereol 16(2):97–104

    Google Scholar 

  • Vogel HJ (1997b) Morphological determination of pore connectivity as a function of pore size using serial sections. Eur J Soil Sci 48:365–377

    Article  Google Scholar 

  • Vogel HJ (2000) A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models. Eur J Soil Sci 51:99–105

    Article  Google Scholar 

  • Vogel H-J (2002) Morphology of condensed matter, physics and geometry of spatially complex systems. In: Mecke K, Stoyan D (eds) Topological characterization of porous media. Springer-Verlag, Berlin-Heidelberg, pp 75–92

    Google Scholar 

  • Vogel H-J, Roth K (2001) Quantitative morphology and network representation of soil pore structure. Adv Water Resour 24:233–242

    Article  Google Scholar 

  • Vogel H-J, Cousin I, Roth K (2002) Quantification of pore structure and gas diffusion as a function of scale. Eur J Soil Sci 53(3):465–473

    Article  Google Scholar 

  • Vogel HJ, Weller U, Schlüter S (2010) Quantification of soil structure based on Minkowski functions. Comput Geosci 36(10):1236–1245

    Article  Google Scholar 

  • Vogel LE, Makowski D, Garnier P, Vieublé-Gonod L, Coquet Y, Raynaud X, Nunan N, Chenu C, Falconer R, Pot V (2015) Modeling the effect of soil meso- and macropores topology on the biodegradation of a soluble carbon substrate. Adv Water Resour 83:123–136

    Article  CAS  Google Scholar 

  • Volkhonskiy D, Muravleva E, Sudakov O, Orlov D, Burnaev E, Koroteev D (2021) Reconstruction of 3D porous media from 2D slices. ar**v: 1901.10233v4 [cs.CV] 6 Aug 2021

    Google Scholar 

  • Waldir LR, de Souza ACA, Barbieri DX (2009) The Euler-Poincaré characteristic applied to identify low bone density from vertebral tomographic images. Rev Bras Reumatol 49(2):140–152

    Google Scholar 

  • Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Processing 13:600–612

    Article  Google Scholar 

  • Wanner T, Fuller ER, Saylor DM (2010) Homology metrics for microstructure response fields in polycrystals. Acta Materialia 58(1):102–111

    Google Scholar 

  • Weinberger S (2011) What is … persistent homology? Not Am Math Soc 58(36):36–39

    Google Scholar 

  • Weissberg HL (1963) Effective diffusion coefficient in porous media. J Appl Phys 34:2636–2639

    Article  CAS  Google Scholar 

  • Weyl H (1911) Über die asymptotische Verteilung der Eigenwerte. Gött Nachr 1911:110–117

    Google Scholar 

  • Wirner F (2015) Flow and transport of colloidal suspensions in porous media. Von der Fakultät Mathematik und Physik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

    Google Scholar 

  • Yang Y, Yang H, Tao L, Yao J, Wang W, Zhang K, Luquot L (2019) Microscopic determination of remaining oil distribution in sandstones with different permeability scales using computed tomography scan. J Energy Resour Technol 141(9):092903

    Google Scholar 

  • Yonezawa F, Cohen MH (1983) Granular effective medium approximation. J Appl Phys 54(6):2895–2899

    Article  Google Scholar 

  • Yoon H, Dewers TA (2013) Nanopore structures, statistically representative elementary volumes, and transport properties of chalk. Geophys Res Lett 40:4294–4298

    Article  CAS  Google Scholar 

  • Zhang D, Zhang R, Chen S, Soll WE (2000) Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV. Geophys Res Lett 27:1195–1198

    Article  Google Scholar 

  • Zhao Y (2019) Application of Euler-Poincaré characteristic in the prediction of permeability of porous media. Intell Autom Soft Comput 25(4):835–845

    Google Scholar 

  • Zomorodian AJ (2005) Topology for computing. Cambridge monographs on applied and computational mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  • Zomorodian A, Carlsson G (2005) Computing persistence homology. Discrete Comput Geom 33(2):249–274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor Korvin .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korvin, G. (2024). The Internal Topology of Rocks. In: Statistical Rock Physics. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-46700-4_3

Download citation

Publish with us

Policies and ethics

Navigation