From Data Science to Materials Data Science

  • Chapter
  • First Online:
Materials Data Science

Part of the book series: The Materials Research Society Series ((MRSS))

  • 264 Accesses

Abstract

In the previous chapter, we saw that data science has ancient roots in many disciplines. For example, it is closely related to statistical theory and mathematics, data visualization, machine learning and artificial intelligence, and computer science and programming. Domain knowledge plays a special role: it is a great source for interesting datasets and problems, which, on the other hand, can also benefit greatly from data analysis. In this chapter, we will give an overview of materials science problems that have been successfully addressed using machine learning approaches, for example. We will also discuss the specifics of materials science data and shed light on the often repeated phrase “turning data into knowledge.”

Data is not information, information is not knowledge, knowledge is not understanding, understanding is not wisdom.

Clifford Stoll (born 1950),

American astronomer, author and teacher

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://creativecommons.org/licenses/by/4.0/

  2. 2.

    Data is denoted as “FAIR” if it is Findable, Accessible, Interoperable, and Reusable. This is seen as an important prerequisite for making research data machine-readable and machine-actionable, which could also be of great benefit to ML and data science.

  3. 3.

    https://www.nist.gov/mgi

References

  1. Material comparison strength vs density (licensed under cc by 4.0, https://creativecommons.org/licenses/by/4.0/deed.en. URL https://commons.wikimedia.org/wiki/File:Material-comparison--strength-vs-density_plain.svg.

  2. M. F. Ashby. Overview no. 80: On the engineering properties of materials. Acta metallurgica, 37(5): 1273–1293, 1989.

    Google Scholar 

  3. M. F. Ashby. Materials Selection in Mechanical Design. Elsevier, 4 edition, 2011. ISBN 978-1-85617-663-7. DOI https://doi.org/10.1016/c2009-0-25539-5.

  4. L. Banko, P. M. Maffettone, D. Naujoks, D. Olds, and A. Ludwig. Deep learning for visualization and novelty detection in large x-ray diffraction datasets. npj Computational Materials, 7(1), July 2021. DOI https://doi.org/10.1038/s41524-021-00575-9.

  5. J. Behler. Perspective: Machine learning potentials for atomistic simulations. The Journal of chemical physics, 145(17): 170901, 2016.

    Google Scholar 

  6. R. Bellman. Dynamic Programming. Dover Publications, 1957. ISBN 9780486428093.

    Google Scholar 

  7. G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

    Google Scholar 

  8. L. Cao. Data science. ACM Computing Surveys, 50(3): 1–42, June 2017. DOI https://doi.org/10.1145/3076253.

  9. S. Curtarolo, G. L. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy. The high-throughput highway to computational materials design. Nature materials, 12(3): 191–201, 2013.

    Article  Google Scholar 

  10. A. Debons, E. Horne, and S. Cronenweth. Information Science: An Integrated View. Professional librarian series. G.K. Hall, 1988.

    Google Scholar 

  11. B. L. DeCost, M. D. Hecht, T. Francis, B. A. Webler, Y. N. Picard, and E. A. Holm. Uhcsdb: ultrahigh carbon steel micrograph database: tools for exploring large heterogeneous microstructure datasets. Integrating Materials and Manufacturing Innovation, 6: 197–205, 2017. DOI https://doi.org/10.1007/s40192-017-0097-0.

  12. J. M. Ede. Deep learning in electron microscopy. Machine Learning: Science and Technology, 2(1): 011004, 2021.

    Google Scholar 

  13. T. Eliot. The Rock. Faber & Faber, London, 1934.

    Google Scholar 

  14. K. Frydrych, K. Karimi, M. Pecelerowicz, R. Alvarez, F. J. Dominguez-Gutiérrez, F. Rovaris, and S. Papanikolaou. Materials informatics for mechanical deformation: A review of applications and challenges. Materials, 14(19): 5764, Oct. 2021. DOI https://doi.org/10.3390/ma14195764.

  15. M. Ge, F. Su, Z. Zhao, and D. Su. Deep learning analysis on microscopic imaging in materials science. Materials Today Nano, 11: 100087, Aug. 2020. DOI https://doi.org/10.1016/j.mtnano.2020.100087.

  16. J. Ghaboussi, J. H. Garrett, and X. Wu. Knowledge-based modeling of material behavior with neural networks. Journal of Engineering Mechanics-asce, 117: 132–153, 1992.

    Google Scholar 

  17. S. R. Kalidindi and M. D. Graef. Materials data science: Current status and future outlook. Annual Review of Materials Research, 45(1): 171–193, July 2015. DOI https://doi.org/10.1146/annurev-matsci-070214-020844.

  18. C. Kusche, T. Reclik, M. Freund, T. Al-Samman, U. Kerzel, and S. Korte-Kerzel. Large-area, high-resolution characterisation and classification of damage mechanisms in dual-phase steel using deep learning. PLOS ONE, 14(5): e0216493, May 2019. DOI https://doi.org/10.1371/journal.pone.0216493.

  19. M. I. Latypov, M. Kühbach, I. J. Beyerlein, J.-C. Stinville, L. S. Toth, T. M. Pollock, and S. R. Kalidindi. Application of chord length distributions and principal component analysis for quantification and representation of diverse polycrystalline microstructures. Materials Characterization, 145: 671–685, 2018. DOI https://doi.org/10.1016/j.matchar.2018.09.020.

  20. S. Lee, M. J. Duarte, M. Feuerbacher, R. Soler, C. Kirchlechner, C. H. Liebscher, S. H. Oh, and G. Dehm. Dislocation plasticity in fecocrmnni high-entropy alloy: quantitative insights from in situ transmission electron microscopy deformation. Materials Research Letters, 8(6): 216–224, 2020a.

    Article  Google Scholar 

  21. S. Lee, A. Vaid, J. Im, B. Kim, A. Prakash, J. Guénolé, D. Kiener, E. Bitzek, and S. H. Oh. In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops. Nature communications, 11(1): 1–11, 2020b.

    Google Scholar 

  22. L. McInnes, J. Healy, and J. Melville. UMAP: Uniform Manifold Approximation and Projection for dimension reduction. The Journal of Open Source Software, 3(29): 861, 2020. DOI https://doi.org/10.21105/joss.00861,

  23. B. D. Nguyen, M. Roder, A. Danilewsky, J. Steiner, P. Wellmann, and S. Sandfeld. Automated analysis of X-ray topography of 4H-SiC wafers: Image analysis, numerical computations, and artificial intelligence approaches for locating and characterizing screw dislocations. Journal of Materials Research 38: 1254–1265, 2023. DOI https://doi.org/10.1557/s43578-022-00880-z.

  24. B. D. Nguyen, J. Steiner, P. Wellmann, and S. Sandfeld. Combining unsupervised and supervised learning in microscopy enables defect analysis of a full 4H-SiC wafer, 2024. DOI https://doi.org/10.48550/ar**v.2402.13353.

  25. OpenAI. Gpt-4 technical report, 2023.

    Google Scholar 

  26. A. Prakash and S. Sandfeld. Chances and challenges in fusing data science with materials science. Practical Metallography, 55 (8): 493–514, 2018. DOI https://doi.org/10.3139/147.110539.

  27. M. H. Rafiei, Y. Gu, and J. A. El-Awady. Machine learning of dislocation-induced stress fields and interaction forces. JOM, 72(12): 4380–4392, Oct. 2020. DOI https://doi.org/10.1007/s11837-020-04389-w.

  28. K. Rajan. Materials informatics. Materials Today, 8(10): 38–45, 2005. ISSN 1369-7021. DOI https://doi.org/10.1016/S1369-7021(05)71123-8. URL https://www.sciencedirect.com/science/article/pii/S1369702105711238.

  29. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim. Machine learning in materials informatics: recent applications and prospects. npj Computational Materials, 3(1), Dec. 2017. DOI https://doi.org/10.1038/s41524-017-0056-5.

  30. J. Rowley. The wisdom hierarchy: representations of the dikw hierarchy. Journal of Information Science, 33(2): 163–180, 2007. DOI https://doi.org/10.1177/0165551506070706.

  31. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3 edition, 2010.

    Google Scholar 

  32. M. Sarvilahti, A. Skaugen, and L. Laurson. Machine learning depinning of dislocation pileups. APL Materials, 8(10), 10 2020. ISSN 2166-532X. DOI https://doi.org/10.1063/5.0020376. 101109.

  33. D. Steinberger, H. Song, and S. Sandfeld. Machine learning-based classification of dislocation microstructures. Frontiers in Materials, 6, 2019. ISSN 2296-8016. DOI https://doi.org/10.3389/fmats.2019.00141.

  34. D. Steinberger, I. Issa, R. Strobl, P. J. Imrich, D. Kiener, and S. Sandfeld. Data-mining of in-situ TEM experiments: Towards understanding nanoscale fracture. Computational Materials Science, 216: 111830, Jan. 2023. DOI https://doi.org/10.1016/j.commatsci.2022.111830.

  35. R. Strack. Deep learning advances super-resolution imaging. Nature Methods, 15(6): 403–403, May 2018. DOI https://doi.org/10.1038/s41592-018-0028-9.

  36. I. Tanaka, K. Rajan, and C. Wolverton. Data-centric science for materials innovation. MRS Bulletin, 43(9): 659–663, 2018.

    Article  Google Scholar 

  37. P. Trampert, D. Rubinstein, F. Boughorbel, C. Schlinkmann, M. Luschkova, P. Slusallek, T. Dahmen, and S. Sandfeld. Deep neural networks for analysis of microscopy images—synthetic data generation and adaptive sampling. Crystals, 11(3), 2021. ISSN 2073-4352. DOI https://doi.org/10.3390/cryst11030258. URL https://www.mdpi.com/2073-4352/11/3/258.

  38. L. von Chamier, R. F. Laine, J. Jukkala, C. Spahn, D. Krentzel, E. Nehme, M. Lerche, S. Hernández-Pérez, P. K. Mattila, E. Karinou, S. Holden, A. C. Solak, A. Krull, T.-O. Buchholz, M. L. Jones, L. A. Royer, C. Leterrier, Y. Shechtman, F. Jug, M. Heilemann, G. Jacquemet, and R. Henriques. Democratising deep learning for microscopy with ZeroCostDL4mic. Nature Communications, 12(1), Apr. 2021. DOI https://doi.org/10.1038/s41467-021-22518-0.

  39. L. Ward and C. Wolverton. Atomistic calculations and materials informatics: A review. Current Opinion in Solid State and Materials Science, 21(3): 167–176, 2017.

    Article  CAS  Google Scholar 

  40. M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran, A. J. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. ’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons. The FAIR guiding principles for scientific data management and stewardship. Scientific Data, 3(1), Mar. 2016. DOI https://doi.org/10.1038/sdata.2016.18.

  41. C. Zhang, H. Song, D. Oliveros, A. Fraczkiewicz, M. Legros, and S. Sandfeld. Data-mining of in-situ tem experiments: On the dynamics of dislocations in CoCrFeMnNi alloys. Acta Materialia, 241:118394, 2022. DOI https://doi.org/10.1016/j.actamat.2022.118394.

  42. C. Zhang, H. Song, D. Oliveros, A. Fraczkiewicz, M. Legros, and S. Sandfeld. Data-mining of in-situ tem experiments: On the dynamics of dislocations in cocrfemnni alloys. Acta Materialia, 241: 118394, 2022.

    Article  CAS  Google Scholar 

  43. C. Zins. Conceptual approaches for defining data, information, and knowledge. Journal of the American Society for Information Science and Technology, 58(4): 479–493, 2007. DOI https://doi.org/10.1002/asi.20508.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sandfeld, S. (2024). From Data Science to Materials Data Science. In: Materials Data Science. The Materials Research Society Series. Springer, Cham. https://doi.org/10.1007/978-3-031-46565-9_2

Download citation

Publish with us

Policies and ethics

Navigation