On the Effect of Loss Function in GAN Based Data Augmentation for Fault Diagnosis of an Industrial Robot

  • Chapter
  • First Online:
Applications of Generative AI

Abstract

Intelligent fault diagnosis often requires a balanced dataset which is hard to be obtained in industrial equipments, often resulting in an imbalance between data in normal and data in the presence of faults. Data augmentation techniques are among the most promising approaches to mitigate such issue. Generative adversarial networks (GAN) are a type of generative model consisting of a generator module and a discriminator. Through adversarial learning between these modules, the optimised generator can produce synthetic patterns that can be used for data augmentation. We investigate the role of loss function in improving the training efficiency of GAN. We proposed a generalization of both mean square error (MSE GAN) and Wasserstein GAN with gradient penalty (WGAN-GP), referred to as VGAN (the V-matrix based GAN) to mitigate training instability. Also, we investigate the sliced Wasserstein distance (SWD) as the loss function of a cycle consistency generative adversarial network (CycleGAN), referred to as SW-CycleGAN. Both two models are evaluated on an industrial robot data set. Experimental results show that the proposed loss functions outperform other competitive models especially in terms of computational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Iqbal, J., Islam, R. U., Abbas, S. Z., Khan, A. A., & Ajwad, S. A. (2016). Automating industrial tasks through mechatronic systems-a review of robotics in industrial perspective. Tehnički vjesnik, 23(3), 917–924.

    Google Scholar 

  2. Caccavale, F., Cilibrizzi, P., Pierri, F., & Villani, L. (2009). Actuators fault diagnosis for robot manipulators with uncertain model. Control Engineering Practice, 17(1), 146–157.

    Article  Google Scholar 

  3. Ali, J. B., Fnaiech, N., Saidi, L., Chebel-Morello, B., & Fnaiech, F. (2015). Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Applied Acoustics, 89, 16–27.

    Article  Google Scholar 

  4. Yan, K., Ji, Z., Lu, H., Huang, J., Shen, W., & Xue, Y. (2017). Fast and accurate classification of time series data using extended elm: Application in fault diagnosis of air handling units. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(7), 1349–1356.

    Article  Google Scholar 

  5. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. C., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144.

    Article  MathSciNet  Google Scholar 

  6. Zhang, S. (2022). On the nash equilibrium of moment-matching gans for stationary Gaussian processes. Ar**v, abs/2203.07136.

    Google Scholar 

  7. Premkumar, M., Jangir, P., Ramakrishnan, C., Nalinipriya, G., Alhelou, H. H., & Kumar, B. S. (2021). Identification of solar photovoltaic model parameters using an improved gradient-based optimization algorithm with chaotic drifts. IEEE Access, 9, 62347–62379.

    Article  Google Scholar 

  8. Koziel, S., & Pietrenko-Dabrowska, A. (2021). Accelerated gradient-based optimization of antenna structures using multifidelity simulations and convergence-based model management scheme. IEEE Transactions on Antennas and Propagation, 69(12), 8778–8789.

    Article  Google Scholar 

  9. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., & Chen, X. (2016). Improved techniques for training gans. In: Advances in neural information processing systems (Vol. 29).

    Google Scholar 

  10. Lee, P. Y., Hui, S. C., & Fong, A. C. M. (2002). Neural networks for web content filtering. IEEE Intelligent Systems, 17(5), 48–57.

    Article  Google Scholar 

  11. Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79–86.

    Article  MathSciNet  Google Scholar 

  12. Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein generative adversarial networks. In International Conference on Machine Learning (pp. 214–223). PMLR.

    Google Scholar 

  13. Levine, A., & Feizi, S. (2020). Wasserstein smoothing: Certified robustness against wasserstein adversarial attacks. In International Conference on Artificial Intelligence and Statistics (pp. 3938–3947). PMLR.

    Google Scholar 

  14. Donahue, J., & Krähenbühl, P., & Darrell, T. (2016). Adversarial feature learning. ar**v preprintar**v:1605.09782.

  15. Yang, S., **e, L., Chen, X., Lou, X., Zhu, X., Huang, D., & Li, H. (2017). Statistical parametric speech synthesis using generative adversarial networks under a multi-task learning framework. In IEEE Automatic Speech Recognition and Understanding Workshop (ASRU) (pp. 685–691). IEEE.

    Google Scholar 

  16. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. Computing Research Repository, page ar**v:1411.1784.

  17. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of wasserstein gans. In Advances in neural information processing systems (Vol. 30).

    Google Scholar 

  18. Li, W., Zhong, X., Shao, H., Cai, B., & Yang, X. (2022). Multi-mode data augmentation and fault diagnosis of rotating machinery using modified acgan designed with new framework. Advanced Engineering Informatics, 52, 101552.

    Article  Google Scholar 

  19. Mao, X., Li, Q., **e, H., Lau, R. Y., Wang, Z., & Paul Smolley, S. (2017). Least squares generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2794–2802).

    Google Scholar 

  20. Lim, J. H., & Ye, J. C. (2017). Geometric gan. Ar**v, abs/1705.02894.

    Google Scholar 

  21. Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral normalization for generative adversarial networks. CoRR, abs/1802.05957.

    Google Scholar 

  22. Tran, D., Ranganath, R., & Blei, D. (2017). Hierarchical implicit models and likelihood-free variational inference. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (eds.), Advances in neural information processing systems (Vol. 30). Curran Associates, Inc.

    Google Scholar 

  23. Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2223–2232).

    Google Scholar 

  24. Che, T., Li, Y., Jacob, A. P., Bengio, Y., & Li, W. (2016). Mode regularized generative adversarial.

    Google Scholar 

  25. Vapnik, V., & Izmailov, R. (2015). V-matrix method of solving statistical inference problems. Journal of Machine Learning Research, 16(51), 1683–1730.

    MathSciNet  Google Scholar 

  26. Vapnik, V., & Izmailov, R. (2019). Rethinking statistical learning theory: learning using statistical invariants. Machine Learning, 108(3), 381–423.

    Article  MathSciNet  Google Scholar 

  27. Pu, Z., Cabrera, D., Li, C., & de Oliveira, J. V. (2022). VGAN: Generalizing MSE GAN and WGAN-GP for robot fault diagnosis. IEEE Intelligent Systems, 37(3), 65–75.

    Article  Google Scholar 

  28. Nadjahi, K. (2021). Sliced-Wasserstein distance for large-scale machine learning: theory, methodology and extensions. Ph.D. thesis, Institut polytechnique de Paris.

    Google Scholar 

  29. Deshpande, I., Zhang, Z., & Schwing, A. (2018). Generative modeling using the sliced Wasserstein distance. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3483–3491). Los Alamitos, CA, USA: IEEE Computer Society.

    Chapter  Google Scholar 

  30. Zhao, K., Jiang, H., Liu, C., Wang, Y., & Zhu, K. (2022). A new data generation approach with modified wasserstein auto-encoder for rotating machinery fault diagnosis with limited fault data. Knowledge-Based Systems, 238, 107892.

    Article  Google Scholar 

  31. Pu, Z., Cabrera, D., Li, C., & de Oliveira, J. V. (2023). Sliced wasserstein cycle consistency generative adversarial networks for fault data augmentation of an industrial robot. Expert Systems with Applications, 222, 119754.

    Article  Google Scholar 

  32. Wang, J., Han, B., Bao, H., Wang, M., Chu, Z., & Shen, Y. (2020). Data augment method for machine fault diagnosis using conditional generative adversarial networks. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(12), 2719–2727.

    Google Scholar 

  33. Balaji, Y., Min, M. R., Bai, B., Chellappa, R., & Graf, H. P. (2019). Conditional gan with discriminative filter generation for text-to-video synthesis. IJCAI, 1, 2.

    Google Scholar 

  34. Hu, T., Long, C., & **ao, C. (2021). A novel visual representation on text using diverse conditional gan for visual recognition. IEEE Transactions on Image Processing, 30, 3499–3512.

    Article  Google Scholar 

  35. Dash, A., Gamboa, J. C. B., Ahmed, S., Liwicki, M., & Afzal, M. Z. (2017). Tac-gan - text conditioned auxiliary classifier generative adversarial network. CoRR, abs/1703.06412.

    Google Scholar 

  36. Gauthier, J. (2014). Conditional generative adversarial nets for convolutional face generation. In Class project for Stanford CS231N: Convolutional neural networks for visual recognition, Winter semester (Vol. 2014, no. 5, p. 2).

    Google Scholar 

  37. Gu, S., Bao, J., Yang, H., Chen, D., Wen, F., & Yuan, L. (2019). Mask-guided portrait editing with conditional gans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3436–3445).

    Google Scholar 

  38. Tang, H., Xu, D., Sebe, N., Wang, Y., Corso, J. J., & Yan, Y. (2019). Multi-channel attention selection gan with cascaded semantic guidance for cross-view image translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2417–2426).

    Google Scholar 

  39. Bo Dai, Sanja Fidler, Raquel Urtasun, and Dahua Lin. Towards diverse and natural image descriptions via a conditional gan. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2970–2979).

    Google Scholar 

  40. Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, B., & Tenenbaum, J. (2018). 3d-aware scene manipulation via inverse graphics. In Advances in neural information processing systems (Vol. 31).

    Google Scholar 

  41. Yang, Z., Chen, W., Wang, F., & Xu, B. (2017). Improving neural machine translation with conditional sequence generative adversarial nets. ar**v preprintar**v:1703.04887.

  42. Shapeev, V., Golushko, S., Belyaev, V., Bryndin, L., & Kirillov, P. (2021). New versions of the least-squares collocation method for solving differential and integral equations. Journal of Physics: Conference Series, 1715, 012031. IOP Publishing.

    Google Scholar 

  43. Kodali, N., Abernethy, J., Hays, J., & Kira, Z. (2018 .On convergence and stability of gans. In International Conference on Learning Representations.

    Google Scholar 

  44. Freirich, D., Michaeli, T., & Meir, R. (2021). A theory of the distortion-perception tradeoff in wasserstein space. Advances in Neural Information Processing Systems, 34.

    Google Scholar 

  45. Piradl, S., & Shadrokh, A. (2021). Robust minimum distance estimation of a linear regression model with correlated errors in the presence of outliers. Communications in Statistics-Theory and Methods, 50(23), 5488–5498.

    Article  MathSciNet  Google Scholar 

  46. Deshpande, I., Zhang, Z., & Schwing, A. G. (2018). Generative modeling using the sliced wasserstein distance. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3483–3491).

    Google Scholar 

  47. Lee, C. Y., Batra, T., Baig, M. H., & Ulbricht, D. (2019). Sliced wasserstein discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 10285–10295).

    Google Scholar 

  48. Nadjahi, K., Durmus, A., Jacob, P. E., Badeau, R., & Simsekli, U. (2021). Fast approximation of the sliced-wasserstein distance using concentration of random projections. Advances in Neural Information Processing Systems, 34.

    Google Scholar 

  49. Tang, H., Liu, H., Xu, D., Torr, P. H., & Sebe, N. (2021). Attentiongan: Unpaired image-to-image translation using attention-guided generative adversarial networks. IEEE Transactions on Neural Networks and Learning Systems.

    Google Scholar 

  50. Lu, Y., Tai, Y. W., & Tang, C. K. (2018). Attribute-guided face generation using conditional cyclegan. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 282–297).

    Google Scholar 

  51. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).

    Google Scholar 

  52. Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 7132–7141).

    Google Scholar 

  53. Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7, 1–30.

    MathSciNet  Google Scholar 

  54. Pacheco, F., de Oliveira, J. V., Sánchez, R. V., Cerrada, M., Cabrera, D., Li, C., Zurita, G., & Artés, M. (2016). A statistical comparison of neuroclassifiers and feature selection methods for gearbox fault diagnosis under realistic conditions. Neurocomputing, 194, 192–206.

    Article  Google Scholar 

  55. Cabrera, D., Sancho, F., Long, J., Sánchez, R. V., Zhang, S., Cerrada, M., & Li, C. (2019). Generative adversarial networks selection approach for extremely imbalanced fault diagnosis of reciprocating machinery. IEEE Access, 7, 70643–70653.

    Article  Google Scholar 

  56. Han, Y., Liu, S., Cong, D., Geng, Z., Fan, J., Gao, J., & Pan, T. (2021). Resource optimization model using novel extreme learning machine with t-distributed stochastic neighbor embedding: Application to complex industrial processes. Energy, 225, 120255.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by Portuguese funds through FCT-Foundation for Science and Technology, in part by I.P., through IDMEC, under LAETA Project UIDB/50022/2020, in part by the National Natural Science Foundation of China under Grant 52175080, in part by the Chongqing Natural Science Foundation under Grant cstc2019jcyj-zdxmX0013, in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2019B1515120095, and in part by the Intelligent Manufacturing PHM Innovation Team Program under Grant 2018KCXTD029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziqiang Pu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pu, Z., Li, C., de Oliveira, J.V. (2024). On the Effect of Loss Function in GAN Based Data Augmentation for Fault Diagnosis of an Industrial Robot. In: Lyu, Z. (eds) Applications of Generative AI. Springer, Cham. https://doi.org/10.1007/978-3-031-46238-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46238-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46237-5

  • Online ISBN: 978-3-031-46238-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation