Sustainability in Production of Enzymes From Fruit and Vegetable Waste

  • Chapter
  • First Online:
Sustainable Food Systems (Volume II)

Part of the book series: World Sustainability Series ((WSUSE))

  • 206 Accesses

Abstract

The management of waste has become a significant economic and environmental challenge as a result of the massive increase in waste generation throughout the world. According to the Food and Agricultural Organization of the United Nations, 14% of the world's food, valued at $400 billion annually, is lost between harvest and the retail market, while 17% of food is wasted at the retail and consumer levels. There are a number of by-products in the large amount of fruit and vegetables wastes that are useful for a diverse range of industries. Various food and vegetable wastes can be used to produce a wide variety of industrial enzymes. The extracted enzymes, is utilized in food research, pharmaceutical, cosmetic, organic acid, and chemical industries. This chapter mainly focuses on the sustainable utilization of fruits and vegetables waste to produce a number of crucial enzymes for food industry, including phytase, pectinase, amylase, cellulase, pectinase, protease, organic acids like acetic acid, lactic acid, etc. are produced using a variety of microorganisms that have been isolated from various dietary wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acourene S, Ammouche A (2012) Optimization of ethanol, citric acid, and a-amylase production from date wastes by strains of Saccharomyces cerevisiae, Aspergillus niger, and Candida guilliermondii. J Ind Microbiol Biotechnol 39:759–766

    Article  CAS  PubMed  Google Scholar 

  • Acourene S, Amourache L, Djafri K, Bekal S (2014) Date wastes as substrate for the production of α-amylase and invertase. Iran J Biotechnol 12(3):41–49

    Article  Google Scholar 

  • Ahlawat S, Mandhan RP, Dhiman SS, Kumar R, Sharma J (2008) Potential application of alkaline pectinase from Bacillus subtilis SS in pulp and paper industry. Appl Biochem Biotechnol 149(3):287–293

    Article  CAS  PubMed  Google Scholar 

  • Ahmed I, Zia MA, Hussain MA, Akram Z, Naveed MT, Nowrouzi A (2016) Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger; its purification and characterization. J Radiat Res Appl 9(2):148–154

    CAS  Google Scholar 

  • Akbar S, Prasuna RG (2012) Exploitation of fruit wastes for pectinase production using Aspergillus oryzae. Int J Pharm Bio Sci 3(3):756–765

    CAS  Google Scholar 

  • Al-Dhabi NA, Esmail GA, Ghilan A-KM, Arasu MV, Duraipandiyan V, Ponmurugan K (2020) Characterization and fermentation optimization of novel thermo stable alkaline protease from Streptomyces sp. Al-Dhabi-82 from the Saudi Arabian environment for eco-friendly and industrial applications. J King Saud Univ Sci 32:1258–1264

    Article  Google Scholar 

  • Ali Y, Verger R, Abousalham A (2012) Lipases or esterases: Does it really matter? Toward a new bio-physico-chemical classification. Methods Mol Biol 861:31–51

    Article  PubMed  Google Scholar 

  • Alkorta I, Garbisu C, Llama MJ, Serra JL (1998) Industrial applications of pectic enzymes: a review. Process Biochem 33(1):21–28

    Article  CAS  Google Scholar 

  • Almanaa, TN, Vijayaraghavan P, Alharbi NS, Kadaikunnan S, Khaled JM, Alyahya SA (2019) Solid state fermentation of amylase production from Bacillus substilis D19 using agro-residues. J King Saud Univ Sci 32(1)

    Google Scholar 

  • Anand G, Yadav S, Yadav D (2017) Production, purification and biochemical characterization of an exo-polygalacturonase from Aspergillus Niger MTCC 478 suitable for clarification of orange juice. 3 Biotech 7(2):122

    Google Scholar 

  • APEDA (2023) Fresh Fruits and vegetables. https://apeda.gov.in/apedawebsite/six_head_product/FFV.htm. Accessed 6 May 2023

  • Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6:141–158

    CAS  Google Scholar 

  • Asha B, Palaniswamy M (2018) Optimization of alkaline protease production by Bacillus cereus FT 1 isolated from soil. J Appl Pharm Sci 8:119–127

    CAS  Google Scholar 

  • Ashis KM, Munindra B, Sudhir KR (2009) To study the influence of different components of fermentable substrates on induction of extracellular alpha amylase synthesis by Bacillus subtilis. Biochem Eng J 43(2):149–156

    Article  Google Scholar 

  • Bahkali AH (1996a) Influence of various carbohydrates on xylanase production in Verticulum tricorpus. Bioresour Technol 57(3):265–268

    Article  CAS  Google Scholar 

  • Bahkali AH (1996b) Influence of various carbohydrates on xylanase production in Verticulumtricorpus. Bioresour Technol 57(3):265–268

    Article  CAS  Google Scholar 

  • Bajaj P, Mahajan R (2019) Cellulase and xylanase synergism in industrial biotechnology. Appl Microbiol Biotechnol 103(21–22):8711–8724

    Article  CAS  PubMed  Google Scholar 

  • Bari MR, Alizadeh M, Farbeh F (2010) Optimizing endo-pectinase production from date pomace by Aspergillus niger PC5 using response surface methodology. Food Bioprod 88:67–72

    Article  CAS  Google Scholar 

  • Barman S, Sit N, Badwaik LS, Deka SC (2015) Pectinase production by Aspergillus Niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice. J Food Sci Technol 52:3579–3589

    CAS  PubMed  Google Scholar 

  • Bayoumi RA, Yassin HM, Swelim MA, Abdel-All EZ (2008) Production of bacterial pectinase (s) from agro-industrial wastes under solid state fermentation conditions. J Appl Sci Res 4:1708–1721

    Google Scholar 

  • Bernardo R, Hongying S, Fabio P, Antonio GJ (2018) Plant viral proteases: beyond the role of peptide cutters. Front Plant Sci 9:666

    Article  Google Scholar 

  • Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Factories 15:106–118

    Article  Google Scholar 

  • Biz A, Finkler ATJ, Pitol LO, Medina BS, Krieger N, Mitchell DA (2016) Production of pectinases by solid-state fermentation of a mixture of citrus waste and sugarcane bagasse in a pilot-scale packed-bed bioreactor. Biochem Eng J 111:54–62

    Article  CAS  Google Scholar 

  • Castilho LR, Medronho RA, Alves TL (2000) Production and extraction of pectinases obtained by solid state fermentation of agro-industrial residues with Aspergillus niger. Bioresour Technol 71(1):45–50

    Article  CAS  Google Scholar 

  • Chakraborty K, Raj RP (2008) An extra-cellular alkaline metallolipase from Bacillus licheniformis MTCC 6824: purification and biochemical characterization. Food Chem 109:727–736

    Article  CAS  PubMed  Google Scholar 

  • Chandra P, Enespa Singh R, Arora PK (2020) Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Factories 19:1–42

    Article  Google Scholar 

  • Chapman-Smith A, Cronan JE (1999) The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity. Trends Biochem Sci 24(9):359–363

    Article  CAS  PubMed  Google Scholar 

  • Chelliappan B, Madhanasundareswari K (2013) Production and optimization of growth conditions for invertase enzyme by aspergillus sp., in solid state fermentation (SSF) using papaya peel as substrate. J Microbiol Biotechnol Food Sci 3(3):266–269.

    Google Scholar 

  • Cheok CY, Mohd Adzahan N, Abdul Rahman R (2018) Current trends of tropical fruit waste utilization. Crit Rev Food Sci Nutr 58:335–361

    PubMed  Google Scholar 

  • Colonia OBSO, Lorenci Woiciechowski A, Malanski R, Junior Letti LA, Soccol C R (2019) Pulp improvement of oil palm empty fruit bunches associated to solid-state biopul** and biobleaching with xylanase and lignin peroxidase cocktail produced by Aspergillus sp. LPB-5. Bioresour Technol 285:121361

    Google Scholar 

  • Contesini FJ, Rodrigues de Melo R, Sato HH (2017) An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol 38(3):321–334

    Article  PubMed  Google Scholar 

  • Correia RT, Magalhaes M, Macedo G (2007) Protein enrichment of pineapple waste with Saccharomyces cerevisiae by solid state bioprocessing. J Sci Ind Res 66:259–262

    CAS  Google Scholar 

  • Dabhi BK, Vyas RV, Shelat HN (2014) Use of banana waste for the production of cellulolytic enzymes under solid substrate fermentation using bacterial consortium. Int J Curr Microbiol App Sci 3(1):337–346

    Google Scholar 

  • Daoud L, Jlidi M, Hmani H, Hadj Brahim A, El Arbi M, Ben Ali M (2017) Characterization of thermo-solvent stable protease from Halobacillus sp. CJ4 isolated from Chott Eldjerid hypersaline lake in Tunisia. J Basic Microbiol 57:104–113

    Article  CAS  PubMed  Google Scholar 

  • Das A, Mondal C (2013) Studies on the utilization of fruit and vegetable waste for generation of biogas. Int J Eng Sci 3(9):24–32

    Google Scholar 

  • Demir H, Tarı C (2014) Valorization of wheat bran for the production of polygalacturonase in SSF of Aspergillus sojae. Ind Crop Prod 54:302–309

    Article  CAS  Google Scholar 

  • Dhillon SS, Gill RK, Gill SS, Singh M (2004) Studies on the utilization of citrus peel for pectinase production using fungus Aspergillus niger. Int J Environ Stud 61:199–210

    Article  CAS  Google Scholar 

  • Di Donato P, Fiorentino G, Anzelmo G, Tommonaro G, Nicolaus B, Poli A (2011) Re-use of vegetable wastes as cheap substrates for extremophile biomass production. Waste Biomass Valorization 2:103–111

    Article  Google Scholar 

  • Dorra G, Ines K, Imen BS, Laurent C, Sana A, Olfa T, Pascal C, Thierry J, Ferid L (2018) Purification and characterization of a novel high molecular weight alkaline protease produced by an endophytic Bacillus halotolerans strain CT2. Int J Biol Macromol 111:342–351

    Article  CAS  PubMed  Google Scholar 

  • Ejaz U, Sohail M, Ghanemi A (2021) Cellulases: from bioactivity to a variety of industrial applications. Biomimetics 6(3):44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enzyme market size (2023). https://www.grandviewresearch.com/industry-analysis/enzymes-industry. Accessed 20 Aug 2023

  • Erdal S, Taskin M (2010) Production of a-amylase by Penicillium expansum MT-1 in solid-state fermentation using waste loquat (Eriobotrya japonica Lindley) kernels as substrate. Rom Biotechnol Lett 15(3):5342–5350

    CAS  Google Scholar 

  • Gao M, Yin X, Yang W, Lam S, Tong X Liu J, Wang X, Li Q, Shui G, He Z (2017) GDSL lipases modulate immunity through lipid homeostasis in rice. PLoS Pathog 13:e1006724

    Google Scholar 

  • Guerrand D (2017) Lipases industrial applications: focus on food and agroindustries. OCL 24:D403

    Article  Google Scholar 

  • Guleria S, Walia A, Chauhan A, Shirkot CK (2016a) Immobilization of Bacillus amyloliquefaciens SP1 and its alkaline protease in various matrices for effective hydrolysis of casein. 3 Biotech 6:208

    Google Scholar 

  • Guleria S, Walia A, Chauhan A, Shirkot CK (2016b) Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum. Int J Food Microbiol 232:134–143

    Article  CAS  PubMed  Google Scholar 

  • Hakim A, Bhuiyan FR, Iqbal A, Emon TH, Ahmed J, Azad AK (2018) Production and partial characterization of dehairing alkaline protease from Bacillus subtilis AKAL7 and Exiguobacterium indicum AKAL11 by using organic municipal solid wastes. Heliyon 4:e00646

    Article  PubMed  PubMed Central  Google Scholar 

  • Haldar D, Sen D, Gayen K (2016) A review on the production of fermentable sugars from lignocellulosic biomass through conventional and enzymatic route—a comparison. Int J Green Energy 13:1232–1253

    Article  CAS  Google Scholar 

  • Heerd D, Diercks-Horn S, Fernández-Lahore M (2014) Efficient polygalacturonase production from agricultural and agro-industrial residues by solid-state culture of Aspergillus sojae under optimized conditions. Springerplus 3(1):742

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoondal GS, Tiwari RP, Tewari R, Dahiya N, Beg QK (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418

    Article  CAS  PubMed  Google Scholar 

  • Horvathova V, Janecek S, Sturdik E (2000) Amylolytic enzymes: their specificities, origins and properties. Biol Bratisl 55(6):605–615

    CAS  Google Scholar 

  • Hussain F, Kamal S, Rehman S, Azeem M, Bibi I, Ahmed T, Iqbal HMN (2017) Alkaline protease production using response surface methodology, characterization and industrial exploitation of alkaline protease of Bacillus subtilis sp. Catal Lett 147:1204–1213

    Article  CAS  Google Scholar 

  • Ibrahim ASS, Elbadawi YB, El-Tayeb MA et al (2019) Alkaline serine protease from the new halotolerant alkaliphilic Salipaludibacillus agaradhaerens strain AK-R: purification and properties. 3 Biotech 9:391.

    Google Scholar 

  • Imran M, Anwar Z, Irshad M, Asad MJ, Ashfaq H (2016) Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: a review. Adv Enzym Res 4(2):44–55

    Article  CAS  Google Scholar 

  • Ingale S, Joshi SJ, Gupte A (2014) Production of bioethanol using agricultural waste: banana pseudo stem. Braz J Microbiol 45(3):885–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  CAS  PubMed  Google Scholar 

  • Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Proc Biochem 40(9):2931–2944

    Article  CAS  Google Scholar 

  • John I, Yaragarla P, Muthaiah P, Ponnusamy K, Appusamy A (2017) Statistical optimization of acid catalyzed steam pretreatment of citrus peel waste for bioethanol production. Resour Effic 3:429–433

    Google Scholar 

  • Jooyandeh H, Amarjeet K, Minhas KS (2009) Lipases in dairy industry: a review. Food Sci Technol 46(3):181–189

    CAS  Google Scholar 

  • Kubra KT, Ali S, Walait M, Sundus H (2018) Potential applications of pectinases in food, agricultural and environmental sectors. Int J Pharm Chem Biol Sci 6(2):23–34

    Google Scholar 

  • Kar S, Ray RC (2008) Partial characterization and optimization of extracellular thermostable Ca2þ inhibited α-amylase production by Streptomyces erumpens MTCC 7317. J Sci Ind Res 67:58–64

    CAS  Google Scholar 

  • Karray A, Alonazi M, Horchani H, Ben BA (2021) A novel thermostable and alkaline protease produced from Bacillus stearothermophilus isolated from olive oil mill sols suitable to industrial biotechnology. Molecules 26:1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashyap D, Vohra P, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour Technol 77(3):215–227

    Article  CAS  PubMed  Google Scholar 

  • Kavuthodi B, Sebastian D (2018) Biotechnological valorization of pineapple stem for pectinase production by Bacillus subtilis BKDS1: media formulation and statistical optimization for submerged fermentation. Biocatal Agric Biotechnol 16:715–722

    Article  Google Scholar 

  • Kittiphattanabawon P, Benjakul S, Visessanguan W, Shahidi F (2012) Gelatin hydrolysate from blacktip shark skin prepared using papaya latex enzyme: antioxidant activity and its potential in model systems. Food Chem 135:1118–1126

    Article  CAS  PubMed  Google Scholar 

  • Kokab S, Asghar M, Rehman K, Asad MJ, Adedyo O (2003) Bioprocessing of banana peel for alpha amylase production by Bacillus subtilis. Int J Agric Biol 5:36–39

    CAS  Google Scholar 

  • Kuhad RC, Deswal D, Sharma S, Bhattacharya A, Jain KK, Kaur A, Pletschke BI, Singh A, Karp M (2016) Revisiting cellulase production and redefining current strategies based on major challenges. Renew Sustain Energy Rev 55:249–272

    Article  CAS  Google Scholar 

  • Kumar D, Ashfaque M, Muthukumar M, Singh M, Garg N (2012) Production and characterization of carboxymethyl cellulase from Paenibacillus polymyxa using mango peel as substrate. J Environ Biol 33:81–84

    CAS  PubMed  Google Scholar 

  • Kumar A, Kanwar SS (2012) Lipase production in solid state fermentation (SSF): recent developments and biological applications. Dyn Biochem Process Biotechnol Mol Biol 6(1):13–27

    Google Scholar 

  • Kumar D, Yadav KK, Muthukumar M, Garg N (2013) Production and characterization of [alpha]-amylase from mango kernel by Fusarium solani NAIMCC-F-02956 using submerged fermentation. J Environ Biol 34(6):1053–1058

    CAS  PubMed  Google Scholar 

  • Kumar R, Kesavapillai B (2012) Stimulation of extracellular invertase production from spent yeast when sugarcane press mud used as substrate through solid state fermentation. Springerplus 1(1):81

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Dangi AK, Shukla P (2018) Engineering thermostable microbial xylanases toward its industrial applications. Mol Biotechnol 60(3):226–235

    Article  CAS  PubMed  Google Scholar 

  • Kuvvet C, Uzuner S, Cekmeceliogl D (2019) Improvement of pectinase production by co-culture of Bacillus spp. using apple pomace as a carbon source. Waste Biomass Valorization 10(5):1241–1249

    Google Scholar 

  • Laufenberg G, Kunz B, Nystroem M (2003) Transformation of vegetable waste into value added products: (A) the upgrading concept;(B) practical implementations. Bioresour Technol 87(2):167–198

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Park O (2019) Lipases associated with plant defense against pathogens. Plant Sci 279:51–58

    Article  CAS  PubMed  Google Scholar 

  • Lehninger AL, Nelson DL, Cox MM (2005) Principles of biochemistry, Freeman, 4th edn. Publishers, New York

    Google Scholar 

  • Li J, Chi Z, Wang X, Peng Y, Chi Z (2009) The selection of alkaline protease-producing yeasts from marine environments and evaluation of their bioactive peptide production. Chin J Oceanol Limnol 27:753

    Article  Google Scholar 

  • Lima JS, Cruz R, Fonseca JC, Medeiros EV, Maciel MHC, Moreira KA, Motta CMS (2014) Production, characterization of tannase from Penicillium mon-tanense URM 6286 under ssf using agroindustrial wastes, and application in the clarification of grape juice (Vitis vinifera L.). Sci World J 2014:182025.

    Google Scholar 

  • Maran JP, Prakash KA (2015) Process variables influence on microwave assisted extraction of pectin from waste Carcia papaya L. peel. Int J Biol Macromol 73:202–206

    Article  CAS  PubMed  Google Scholar 

  • Martens-Uzunova ES, Schaap PJ (2009) Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics. Fungal Genet Biol 46:170–179

    Article  Google Scholar 

  • Martins MD, Guimaraes MW, de Lima VA, Gaglioti AL, Da-Silva PR, Kadowaki MK, Knob A (2018) Valorization of passion fruit peel by-product: Xylanase production and its potential as bleaching agent for kraft pulp. Biocatal Agric Biotechnol y 16:172–180

    Article  Google Scholar 

  • Maruthiah T, Somanath B, Jasmin JV, Immanuel G, Palavesam A (2016) Production, purification and characterization of halophilic organic solvent tolerant protease from marine crustacean shell wastes and its efficacy on deproteinization. 3 Biotech 6:157

    Google Scholar 

  • Mashetty SB, Biradar V (2019) Orange peel as novel substrate for enhanced invertase production by A. niger in solid state fermentation. Int J Curr Microbiol App Sci 8(4):1114–1121

    Google Scholar 

  • Mehta K, Duhan JS (2014) Production of invertase from Aspergillus niger using fruit peel waste as a substrate. Int J Pharm Bio Sci 5(2):353–360

    CAS  Google Scholar 

  • Mounaimen O, Mahmoud K (2015) Statistical optimization of cultural conditions of a halophilic alpha-amylase production by halophilic Streptomyces sp. grownv on orange waste powder. Biocatal Agric Biotechnol 4(4):685–693.

    Google Scholar 

  • Mrudula S, Anitharaj R (2011) Pectinase production in solid state fermentation by Aspergillus niger using orange peel as substrate. Glob J Biotechnol Biochem 6(2):64–71

    CAS  Google Scholar 

  • Munde PJ, Muley AB, Ladole MR, Pawar AV, Talib MI, Parate VR (2017) Optimization of pectinase-assisted and tri-solvent-mediated extraction and recovery of lycopene from waste tomato peels. 3 Biotech 7(3):206

    Google Scholar 

  • Mussatto SI, Ballesteros LF, Martins S, Teixeira JA (2012) Use of agro-industrial wastes in solid-state fermentation processes. In: Show K (ed) Industrial waste, Intech, Croatia, pp 121–140

    Google Scholar 

  • Nalinanon S, Benjakul S, Kishimura H, Shahidi F (2011) Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chem 124:1354–1362

    Article  CAS  Google Scholar 

  • Naveed M, Nadeem F, Mehmood T, Bilal M, Anwar Z, Amjad F (2021) Protease-a versatile and ecofriendly biocatalyst with multi-industrial applications: an updated review. Catal Lett 151(2):307–323

    Article  CAS  Google Scholar 

  • New ML, YiHtay Y, Win T (2018) Functional food: productivity of pectinase enzyme from Asergillus niger used in wine making. In: Conference on Innovation of Functional Foods in Asia (IFFA).

    Google Scholar 

  • Nighojkar A, Patidar MK, Nighojkar S (2019) Pectinases: production and applications for fruit juice beverages. In: Grumazescu AM, Holban AM (eds) Processing and sustainability of beverages. Woodhead Publ., pp 235–273

    Google Scholar 

  • Noomen H, Ali N, El-H HA, Kanoun S, Alya SK (2009) Alkaline proteases and thermostable α- amylase coproduced by Bacillus licheniformis NH1: characterization and potential application as detergent additive. Biochem Eng J 47:71–79

    Article  Google Scholar 

  • Norsalwani TLT, Norulain NAN (2012) Utilization of lignocellulosic wastes as a carbon source for the production of bacterial cellulases under solid state fermentation. Int J Env Sci Dev 3(2):136–140

    Article  CAS  Google Scholar 

  • Oberoi HS, Chavan Y, Bansal S, Dhillon GS (2010) Production of cellulases through solid state fermentation using kinnow pulp as a major substrate. Food Bioproc Tech 3(4):528–538

    Article  CAS  Google Scholar 

  • Oelofse SH, Nahman A (2013) Estimating the magnitude of food waste generated in South Africa. Waste Manag Res 31(1):80–86

    Article  PubMed  Google Scholar 

  • Ogura M, Kawata-Mukai M, Itaya M, Takio K, Tanak T (1994) Multiple copies of the proB gene enhance degS-dependent extracellular protease production in Bacillus subtilis. J Bacteriol 176(18):5673–5680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmiya K, Sakka K, Kimura T, Karita S (1997) Structure of cellulases and their applications. Biotechnol Genet Eng Rev 14:365–414

    Article  CAS  PubMed  Google Scholar 

  • Okafor UA, Okochi VI, Chinedu SN, Ebuehi OAT, Onygeme-Okerenta BM (2010) Pectinolytic activity of wild-type filamentous fungi fermented on agro-wastes. Afr J Microbiol Res 4(24):2729–2734

    CAS  Google Scholar 

  • Olanbiwoninu AA, Odunfa SA (2016) Production of cellulase and xylanase by Aspergillus terreus KJ829487 using cassava peels as subtrates. J Adv Microbiol 6(07):502

    Article  CAS  Google Scholar 

  • Ortiz GE, Ponce-Mora C, Noseda DG (2017) Pectinase production by Aspergillus giganteus in solid-state fermentation: optimization, scale-up, biochemical characterization and its application in olive-oil extraction. J Microbiol Biotechnol 44:197–211

    CAS  Google Scholar 

  • Oshoma CE, Eguakun-Owie SO, Obuekwe IS (2019) Utilization of banana peel as a substrate for Single cell protein and Amylase poduction by Aspergillus niger. S Afr J Sci 18(3):143–150

    Google Scholar 

  • Oyedeji O, Bakare MK, Adewale IO, Olutiola PK, Omoboye OO (2017) Optimized production and characterization of thermostable invertase from Aspergillus niger IBK1, using pineapple peel as alternate substrate. Biocatal Agric Biotechnol 9:218–223

    Google Scholar 

  • Oyedeji O, Ojekunle OO (2018) Cellulase Production by Penicillium citrinum using Brewers Spent Grain and Pineapple Peels as Cheap. Alternate Substrates Int J Sci 7(01):74–83

    Google Scholar 

  • Oyeleke SB, Oyewole OA, Egwim EC (2011) Production of protease and amylase from Bacillus subtilis and Aspergillus niger using Parkia biglobossa (Africa locust beans) as substrate in solid state fermentation. Adv Life Sci 1(2):49–53

    Google Scholar 

  • Panagiotou G, Kekos G, Macris BJ, Christakopoulos P (2003) Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Indian Crop Prod 18:37–45

    Article  CAS  Google Scholar 

  • Panda SK, Mishra SS, Kayitesi E, Ray RC (2016) Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: biotechnology and scopes. Environ Res 146:161–172

    Article  CAS  PubMed  Google Scholar 

  • Paranthaman R, Vidyalakshmi R, Murugesh S, Singaravadivel K (2009) Effects of fungal co-culture for the biosynthesis of tannase and gallic acid from grape wastes under solid state fermentation. Glob J Biotechnol Biochem 4(1):29–36

    CAS  Google Scholar 

  • Parihar DK (2012) Production of lipase utilizing linseed oilcake as fermentation substrate. Int J Sci Environ Technol 1(3):135–143

    Google Scholar 

  • Park SH, Ong RG, Sticklen M (2016) Strategies for the production of cell wall deconstructing enzymes in lignocellulosic biomass and their utilization for biofuel production. Plant Biotechnol J 14:1329–1344

    Article  CAS  PubMed  Google Scholar 

  • Patel AK, Singhania RR, Sim SJ, Pandey A (2019) Thermostable cellulases: current status and perspectives. Bioresour Technol 279:385–392

    Article  CAS  PubMed  Google Scholar 

  • Patidar MK, Nighojkar S, Kumar A, Nighojkar A (2016) Papaya peel valorization for production of acidic pectin methylesterase by Aspergillus tubingensis and its application for fruit juice clarification. Biocatal Agric Biotechnol 6:58–67

    Article  Google Scholar 

  • Patil VS, Deshmukh HV (2015) A review on co-digestion of vegetable waste with organic wastes for energy generation. Int J Biol Sci 4(6):83–86

    Google Scholar 

  • Patil RC, Murugkar TP, Shaikh SA (2012) Extraction of pectinase from pectinolytic bacteria isolated from carrot waste. Int J Pharma Bio Sci 3(1):261–266

    CAS  Google Scholar 

  • Pereira CR, Resende JT, Guerra EP, Lima VA, Martins MD, Knob A (2017) Enzymatic conversion of sweet potato granular starch into fermentable sugars: feasibility of sweet potato peel as alternative substrate for α-amylase production. Biocatal Agric Biotechnol 11:231–238

    Article  Google Scholar 

  • Pervez S, Shahid F, Aman A, Qader SAU (2017) Algal biomass: a sustainable, economical and renewable approach for microbial production of pectinolytic enzymes using submerged and solid-state fermentation techniques. Biocatal Biotransformation 35:442–449

    Article  CAS  Google Scholar 

  • Phutela U, Dhuna V, Sandhu S, Chadha BS (2005) Pectinase and polygalacturonase production by a thermophilic Aspergillus fumigatus isolated from decomposting orange peels. Braz J Microbiol 36:63–69

    Article  CAS  Google Scholar 

  • Pothiraj C, Balaji P, Eyini M (2006) Enhanced production of cellulases by various fungal cultures in solid state fermentation of cassava waste. Afr J Biotechnol 5(20):1882–1885

    CAS  Google Scholar 

  • Prommajak T, Leksawasdi N, Rattanapanone N (2014) Biotechnological valorization of cashew apple: a review. CMU J Nat Sci 13(2):159–182

    Google Scholar 

  • Putranto WS, Kusmajadi S, Hartati C, Apon ZM, Puspo EG, Harsi DK, Maggy TS (2017) Enterococcus faecium 1.15 isolated from bakasam showed milk clotting activity. Ann Bogor 21:9–14

    Article  Google Scholar 

  • Qureshi AS, Bhutto MA, Chisti Y, Khushk I, Dahot MU, Bano S (2012) Production of pectinase by Bacillus subtilis EFRL 01 in a date syrup medium. Afr J Biotechnol 11:12563–12570

    CAS  Google Scholar 

  • Radha S, Sridevi A, HimakiranBabu R, Nithya VJ, Prasad NBL, Narasimha G (2012) Medium optimization for acid protease production from Aspergillus sp. under solid state fermentation and mathematical modelling of protease activity. J Microbiol Biotech Res 2(1):6–16

    Google Scholar 

  • Rahem FZ, Badis A, Zenati B, Mechri S, Hadjidj R, Rekik H, Eddouaouda K, Annane R, Jaouadi B (2021) Characterization of a novel serine alkaline protease from Bacillus atrophaeus NIJ as a thermophilic hydrocarbonoclastic strain and its application in laundry detergent formulations. Int J Environ Sci Technol 7:1707–1724

    CAS  Google Scholar 

  • Rao PV, Satya CH, Reddy DS (2014) Jack fruit waste: a potential substrate for pectinase production. Indian J Sci Res 9:58–62

    Google Scholar 

  • Raspor P, Goranovic D (2008) Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol 28(2):101–124

    Article  CAS  PubMed  Google Scholar 

  • Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Rebello S, Pandey A (2018) Applications of microbial enzymes in food industry. Food Technol Biotechnol 56(1):16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray RC, Ward OP (2006) Postharvest microbial biotechnology of tropical root and tuber crops. In: Ray RC, Ward OP (eds) Microbial biotechnology in horticulture. Science Publishers, Enfield, NH, USA, pp 511–552

    Chapter  Google Scholar 

  • Razzaq A, Shamsi S, Ali A, Ali Q, Sajjad M, Malik A, Ashraf M (2019) Microbial proteases applications. Front Bioeng. Biotechnol 7:110

    Google Scholar 

  • Rebello LPG, Ramos AM, Pertuzatti PB, Barcia MT, Castillo-Muñoz N, HermosínGutiérrez I (2014) Flour of banana (MusaAAA) peel as a source of antioxidant phenolic compounds. Food Res Int 55:397–403

    Article  CAS  Google Scholar 

  • Ribeiro DS, Henrique S, Oliveira LS, Macedo GA, Fleuri LF (2010) Enzymes in juice processing: a review. Int J Food Sci 45(4):635–641

    Article  CAS  Google Scholar 

  • Rivera I, Mateos J, Sandoval G (2012) Plant lipases: partial purification of Carica papaya lipase. In: Sandoval G (ed) Lipases and phospholipases: methods and protocols. Humana Press, Totowa, NJ, USA, pp 115–122

    Google Scholar 

  • Rodrıguez LA, Toro ME, Vazquez F, Correa-Daneri ML, Gouiric SC, Vallejo MD (2010) Bioethanol production from grape and sugar beet pomaces by solid-state fermentation. Int J Hydrog Energy 35:5914–5917

    Article  Google Scholar 

  • Roth JCG, Hoeltz M, Benitez LB (2020) Current approaches and trends in the production of microbial cellulases using residual lignocellulosic biomass: a bibliometric analysis of the last 10 years. Arch Microbiol 202(5):935–951

    Article  CAS  PubMed  Google Scholar 

  • Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG (2018) Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci 17(3):512–531

    Article  CAS  Google Scholar 

  • Saini R, Saini HS, Dahiya A (2017) Amylases: characteristics and industrial applications. J Pharmacogn Phytochem 6(4):1865–1871

    CAS  Google Scholar 

  • Saini A, Panesar PS, Bera MB (2019) Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour Bioprocess 6(1):26

    Article  Google Scholar 

  • Sakka K, Kimura T, Karita S, Ohmiya K (2000) Molecular breeding of cellulolytic microbes, plants, and animals for biomass utilization. J Biosci Bioeng 90:227–233

    Article  CAS  PubMed  Google Scholar 

  • Sandoval G (2018) Lipases and phospholipases, 2nd edn, vol 1835. Springer, Berlin, p 437

    Google Scholar 

  • Santis-Navarro A, Gea T, Barrena R, Sanchez A (2011) Production of lipases by solid state fermentation using vegetable oil-refining wastes. Bioresour Technol 102:10080–10084

    Article  CAS  PubMed  Google Scholar 

  • Saravanan P, Muthuvelayudham R, Viruthagiri T (2012) Application of statistical design for the production of cellulase by Trichoderma reesei using mango peel. Enzyme Res 157643:7

    Google Scholar 

  • Sarioglu K, Demir N, Acar J, Mutlu M (2001) The use of commercial pectinase in the fruit juice industry, part 2: determination of the kinetic behaviour of immobilized commercial pectinase. J Food Eng 47:271–274

    Article  Google Scholar 

  • Sethi BK, Nanda PK, Sahoo S (2016) Enhanced production of pectinase by Aspergillus terreus NCFT 4269.10 using banana peels as substrate. 3 Biotech 6(1):36

    Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization and applications of lipases. Biotechnol Adv 19:627–662

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Oberoi HS, Dhillon GS (2016) Fruit and vegetable processing waste: renewable feed stocks for enzyme production. In: Dhillon GS, Kaur S (eds) Agro-industrial wastes as feedstock for enzyme production: apply and exploit the emerging and valuable use options of waste biomass. Academic Press Elsevier, London, UK, pp 23–59

    Google Scholar 

  • Shukla J, Kar R (2006) Potato peel as a solid-state substrate for thermostable alpha amylase production by thermophilic Bacillus asolate. World J Microbiol Biotechnol 22:417–422

    Article  CAS  Google Scholar 

  • Silva DF, Hergesel LM, Campioni TS, Carvalho AFA, Oliva-Neto P (2018) Evaluation of different biological and chemical treatments in agroindustrial residues for the production of fungal glucanases and xylanases. Process Biochem 67:29–37

    Article  CAS  Google Scholar 

  • Silva R, Lago ES, Merheb CW, Macchione MM, Park YK, Gomes E (2005) Production of xylanase and cmcase on solid state fermentation in different residues by Thermoascus aurantiacus MIEHE. Braz J Microbiol 36:235–241

    Article  Google Scholar 

  • Singh A, Kuila A, Adak S, Bishai M, Banerjee R (2011) Use of fermentation technology on vegetable residues for value added product development: a concept of zero waste utilization. Int J Fd Ferm Technol 1(2):173–184

    Google Scholar 

  • Singhania RR, Saini R, Adsul M, Saini JK, Mathur A, Tuli D (2015) An integrative process for bio-ethanol production employing SSF produced cellulase without extraction. Biochem Eng J 102:45–48

    Article  CAS  Google Scholar 

  • Solanki P, Putatunda C, Kumar A, Bhatia R, Walia A (2021) Microbial proteases: ubiquitous enzymes with innumerable uses. 3 Biotech 11(10):428

    Google Scholar 

  • Solis S, Loeza J, Segura G, Tello J, Reyes N, Lappe P, Guiterrez L, Rios F, Huitron C (2009) Hydrolysis of orange peel by a pectin lyase-overproducing hybrid obtained by protoplast fusion between mutant pectinolytic Aspergillus flavipes and Aspergillus niveus CH-Y-1043. Enz Microbiol Technol 44:123–128

    Article  CAS  Google Scholar 

  • Souza JVB, Silva ES, Maia MLS, Teixeira MFS (2003) Screening of fungal strains for pectinolytic activity: endopolygalacturonase production by Peacilomyces clavisporus 2A. UMIDA.1. Proc Biochem 39:455–458

    Article  CAS  Google Scholar 

  • Souza PM, Werneck G, Aliakbarian B, Siqueira F, Filho EXF, Perego P, Converti A, Magalhães PO, Pessoa Junior A (2017) Production, purification and characterization of an aspartic protease from Aspergillus foetidus. Food Chem Toxicol 109:1103–1110

    Article  CAS  PubMed  Google Scholar 

  • Spier MR, Fendrich RC, Almeida PC, Noseda M, Greiner R, Konietzny U, Woiciechowski AL, Soccol VT, Soccol CR (2010) Phytase produced on citric byproducts: purification and characterization. World J Microbiol Biotechnol 27:267–274

    Article  Google Scholar 

  • Sridevi VD, Ramanujam RA (2012) Performance of mixture of vegetable wastes with high carbohydrate content in anaerobic digestion process. Int J Env Sci 3(1):181–191

    Google Scholar 

  • Srivastava N, Srivastava M, Alhazmi A, Kausar T, Haque S, Singh R, Ramteke PW, Mishra PK, Tuohy M, Leitgeb M, Gupta VK (2021a) Technological advances for improving fungal cellulase production from fruit wastes for bioenergy application: a review. Environ Pollut 287:117370

    Article  CAS  PubMed  Google Scholar 

  • Srivastava N, Shrivastav A, Singh R, Abohashrh M, Srivastava KR, Irfan S, Thakur VK (2021) Advances in the structural composition of biomass: fundamental and bioenergy applications. J Renew Mater 9(4)

    Google Scholar 

  • Srivastava N, Srivastava M, Manikanta A, Singh P, Ramteke PW, Mishra PK, Malhotra BD (2017) Production and optimization of physicochemical parameters of cellulase using untreated orange waste by newly isolated Emericella variecolor NS3. Appl Biochem Biotechnol 183(2):601–612

    Article  CAS  PubMed  Google Scholar 

  • Srivastava N, Srivastava M, Mishra PK, Singh P, Ramteke PW (2015) Application of cellulases in biofuels industries: an overview. J Biofuels Bioenergy 1:55–63

    Article  Google Scholar 

  • Sumantha A, Larroche C, Pandey A (2006) Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol 44:211

    CAS  Google Scholar 

  • Suneetha V, Prathyusha K (2011) Bacterial pectinases and their potent biotechnological application in fruit processing/juice production industry: a review. J Phytol 3(6):11–15

    Google Scholar 

  • Suresh Chandra Kurup R, Nagendra Prabhu G (2001) Utilization of water hyacinth for cellulase production using native microflora under SSF. In: International conference on new horizons in biotechnology, Trivandrum, Kerala, India

    Google Scholar 

  • Suresh Chandra Kurup R, Snishamol C, Nagendra Prabhu G (2005) Cellulase production by nativebacteria using water hyacinth as substrate under solid state fermentation. Malays J Microbiol 1(2):25–29

    Google Scholar 

  • Swain MR, Ray RC (2010) Production, characterization and application of a thermostable exo-polygalacturonase by Bacillus subtilis CM5. Food Biotechnol 24:37–50

    Article  CAS  Google Scholar 

  • Szymczak T, Cybulska J, PodleÅ›ny M, FrÄ…c M (2021) Various perspectives on microbial lipase production using agri-food waste and renewable products. Agriculture 11:540

    Article  CAS  Google Scholar 

  • Taher IB, Bennour H, Fickers P, Hassouna M (2017) Valorization of potato peels residues on cellulase production using a mixed culture of Aspergillusniger ATCC 16404 and Trichodermareesei DSMZ 970. Waste Biomass Valorization 8(1):183–192

    Article  Google Scholar 

  • Tai ES, Hsieh PC, Sheu SC (2014) Effect of polygalacturonase and feruloyl esterase from Aspergillus tubingensis on demucilage and quality of coffee beans. Process Biochem 49:1274–1280

    Article  CAS  Google Scholar 

  • Takata H, Kuriki T, Okada S, Takesada Y, Iizuka M, Minamiura N, Imanaka T (1992) Action of neopullulanase; Neopululanase catalyzes both hydrolysis and tranglycosylation at alpha-(1–4)-and alpha-(1–6)- glucosidic linkages. J Biol Chem 267:18447–18452

    Article  CAS  PubMed  Google Scholar 

  • Tao NG, Shi WQ, Liu YJ, Huang SR (2011) Production of feed enzymes from citrus processing waste by solid-state fermentation with Eupenicillium javanicum. Int J Food Sci Technol 46(5):1073–1079

    Article  CAS  Google Scholar 

  • Thakur M, Modi VK (2020) Emerging technologies in food science- focus on the develo** world. Springer Nature

    Google Scholar 

  • Thakur M, Modi VK, Khedkar R, Singh K (2020) Sustainable food waste management: concepts and innovations. Springer Nature

    Google Scholar 

  • Thiansilakul Y, Benjakul S, Shahidi F (2007) Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chem 103:1385–1394

    Article  CAS  Google Scholar 

  • Toumi S, Tifrit A, Hadjazi D, Chama Z, Abbouni B (2016) Production of a thermostable amylase by yeast strain isolated from saharian soils cultivated in soft cheese whey. Pharm Lett 8:32–41

    CAS  Google Scholar 

  • Uma C, Gomathi D, Muthulakshimi C, Gopalakrishnan VK (2010) Production, purification and characterization of invertase by Aspergillus flavus using fruit peel waste as substrate. Adv Biol Res 4(1):31–36

    CAS  Google Scholar 

  • Uma C, Gomathi D, Ravikumar G, Kalaiselvi M, Palaniswamy M (2012) Production and properties of invertase from a Cladosporium cladosporioides in SmF using pomegranate peel waste as substrate. Asian Pac J Trop Biomed 2(2):S605–S611

    Article  Google Scholar 

  • Unakal C, Kallur RI, Kaliwal BB (2012) Production of α-amylase using banana waste by Bacillus subtilis under solid state fermentation. Eur J Exper Biol 2(4):1044–1052

    CAS  Google Scholar 

  • Uygut MA, Tanyildizi MÅž (2018) Optimization of alpha-amylase production by Bacillus amyloliquefaciens grown on orange peels. Iran J Sci Technol Trans a: Sci 42(2):443–449

    Article  Google Scholar 

  • Valenta C (2005) The use of muco adhesive polymers in vaginal delivery. Adv Drug Deliv Rev 57:1692–1712

    Article  CAS  PubMed  Google Scholar 

  • Veana F, Flores-Gallegos AC, Gonzalez-Montemayor AM, Michel-Michel M, LopezLopez L, Aguilar-Zarate P, Rodríguez-Herrera R (2018) Invertase: an enzyme with importance in confectionery food industry. In: Kuddus M (ed) Enzymes in food technology. Springer, Singapore, pp 187–212

    Google Scholar 

  • Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RFH (2014) Solid-state fermentation of coconut kernel-cake as substrate for the production of lipases by the coconut kernel-associated fungus Lasiodiplodia theobromae VBE-1. Ann Microbiol. https://doi.org/10.1007/s13213-014-0844-9

    Article  Google Scholar 

  • Venkatesh M, Pushpalatha PB, Sheela KB, Girija D (2009) Microbial pectinase from tropical fruit wastes. J Trop Agr 47(1):67–69

    CAS  Google Scholar 

  • Villeneuve P (2003) Plant lipases and their applications in oils and fats modification. Eur J Lipid Sci Technol 105:308–317

    Article  CAS  Google Scholar 

  • Viswanath V, Beena AK, Silva JD (2018) Characterization of a cellulase producing pseudomonas fluorescens Isolated from agricultural waste. Biotechnol Res Int 4(4):109–113

    CAS  Google Scholar 

  • Walker GM, Stewart GG (2016) Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2(4):30

    Article  Google Scholar 

  • Wobiwo FA, Emaga TH, Fokou E, Boda M, Gillet S, Deleu M, Richel A, Gerin PA (2016) Comparative biochemical methane potential of some varieties of residual banana biomass and renewable energy potential. Biomass Convers Biorefin 1–11

    Google Scholar 

  • Wong LY, Saad WZ, Mohamad R, Tahir PM (2017) Optimization of cultural conditions for polygalacturonase production by a newly isolated Aspergillus fumigatus R6 capable of retting kenaf. Ind Crops Prod 97:175–183

    Article  CAS  Google Scholar 

  • Wu HC, Chen HM, Shiau CY (2003) Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res Int 36:949–957. https://doi.org/10.1016/S0963-9969(03)00104-2

    Article  CAS  Google Scholar 

  • **n X, Ambati RR, Cai Z, Lei B (2018) Purification and characterization of fibrinolytic enzyme from a bacterium isolated from soil. 3 Biotech 8:90

    Google Scholar 

  • Zacharof MP (2017) Grape winery waste as feedstock for bioconversions: applying the biorefinery concept. Waste Biomass Valorization 8:1011–1025

    Article  CAS  Google Scholar 

  • Zahid A, Khedkar R (2021) Valorisation of fruits and vegetables. Curr Nutr Food Sci 18(3):315–328

    Article  Google Scholar 

  • Zehra M, Syed MN, Sohail M (2020) Banana peels: a promising substrate for the coproduction of pectinase and xylanase from Aspergillus fumigatus MS16. Pol J Microbiol 69(1):19–26

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Khedkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zahid, A., Khedkar, R. (2024). Sustainability in Production of Enzymes From Fruit and Vegetable Waste. In: Thakur, M. (eds) Sustainable Food Systems (Volume II). World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-3-031-46046-3_7

Download citation

Publish with us

Policies and ethics

Navigation