ANTENNA: Visual Analytics of Mobility Derived from Cellphone Data

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022)

Abstract

Nowadays, it is possible to characterise, visualise, and analyse urban mobility using digital footprints, in particular, cellphones. However, movement patterns from vast heterogeneous datasets must be parsed, filtered, and aggregated using dynamic and scalable methods. ANTENNA, is a visual analytic tool that depicts trajectories of movement gathered from mobile cellphone data, enabling the discovery and analysis of its patterns. The data is processed in real time, transforming raw records of cellphone connections into trajectories, that can be used to infer mass movements of crowds. The proposed visualisation tool is prepared to deal with different analytical scenarios, presenting distinct visualisation strategies for various ranges of tasks. We conducted user testing with experts from many fields to validate ANTENNA. According to the results, ANTENNA proved to be beneficial for each one of the tested scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 64.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 80.24
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the REST API module works in an asynchronous way, i.e., once a visual query is submitted it delivers the response for the visual query submission and becomes available to accept new visual queries.

  2. 2.

    A telecommunication operator in Portugal.

  3. 3.

    The shapefiles for the Portugal administrative units were taken from GADM.

  4. 4.

    https://pgrouting.org/.

  5. 5.

    An antenna may not exhibit the 3 types of behaviours previously described.

  6. 6.

    Other scenarios can be visualised in the demo videos at the following link https://bit.ly/3BTcoaY.

References

  1. Andrienko, G., Andrienko, N., Heurich, M.: An event-based conceptual model for context-aware movement analysis. Int. J. Geogr. Inf. Sci. 25(9), 1347–1370 (2011)

    Article  Google Scholar 

  2. Andrienko, G., Andrienko, N., Hurter, C., Rinzivillo, S., Wrobel, S.: From movement tracks through events to places: extracting and characterizing significant places from mobility data. In: 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 161–170. IEEE (2011)

    Google Scholar 

  3. Andrienko, G., Andrienko, N., Wrobel, S.: Visual analytics tools for analysis of movement data. ACM SIGKDD Explor. Newsl. 9(2), 38–46 (2007)

    Article  Google Scholar 

  4. Andrienko, N., Andrienko, G.: Visual analytics of movement: an overview of methods, tools and procedures. Inf. Vis. 12(1), 3–24 (2013)

    Article  MathSciNet  Google Scholar 

  5. Andrienko, N., Andrienko, G., Gatalsky, P.: Supporting visual exploration of object movement. In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 217–220 (2000)

    Google Scholar 

  6. Bach, B., Dragicevic, P., Archambault, D., Hurter, C., Carpendale, S.: A descriptive framework for temporal data visualizations based on generalized space-time cubes. In: Computer Graphics Forum, vol. 36, pp. 36–61. Wiley Online Library (2017)

    Google Scholar 

  7. Bach, B., Perin, C., Ren, Q., Dragicevic, P.: Ways of visualizing data on curves (2018)

    Google Scholar 

  8. Bouvier, D.J., Oates, B.: Evacuation traces mini challenge award: innovative trace visualization staining for information discovery. In: 2008 IEEE Symposium on Visual Analytics Science and Technology, pp. 219–220. IEEE (2008)

    Google Scholar 

  9. Calabrese, F., Diao, M., Di Lorenzo, G., Ferreira, J., Jr., Ratti, C.: Understanding individual mobility patterns from urban sensing data: a mobile phone trace example. Transp. Res. Part C Emerg. Technol. 26, 301–313 (2013)

    Article  Google Scholar 

  10. Chua, A., Marcheggiani, E., Servillo, L., Vande Moere, A.: FlowSampler: visual analysis of urban flows in geolocated social media data. In: Aiello, L.M., McFarland, D. (eds.) SocInfo 2014. LNCS, vol. 8852, pp. 5–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15168-7_2

    Chapter  Google Scholar 

  11. Chua, A., Servillo, L., Marcheggiani, E., Moere, A.V.: Map** Cilento: using geotagged social media data to characterize tourist flows in Southern Italy. Tour. Manage. 57, 295–310 (2016)

    Article  Google Scholar 

  12. Cornel, D., et al.: Composite flow maps. In: Computer Graphics Forum, vol. 35, pp. 461–470. Wiley Online Library (2016)

    Google Scholar 

  13. Dent, B.: Cartography: Thematic Map Design, vol. 1. WCB/McGraw-Hill (1999)

    Google Scholar 

  14. Enguehard, R.A., Hoeber, O., Devillers, R.: Interactive exploration of movement data: a case study of geovisual analytics for fishing vessel analysis. Inf. Vis. 12(1), 65–84 (2013)

    Article  Google Scholar 

  15. Fiadino, P., Valerio, D., Ricciato, F., Hummel, K.A.: Steps towards the extraction of vehicular mobility patterns from 3G signaling data. In: Pescapè, A., Salgarelli, L., Dimitropoulos, X. (eds.) TMA 2012. LNCS, vol. 7189, pp. 66–80. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28534-9_7

    Chapter  Google Scholar 

  16. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. nature 453(7196), 779–782 (2008)

    Article  Google Scholar 

  17. Guo, D.: Visual analytics of spatial interaction patterns for pandemic decision support. Int. J. Geogr. Inf. Sci. 21(8), 859–877 (2007)

    Article  Google Scholar 

  18. Guo, D., Chen, J., MacEachren, A.M., Liao, K.: A visualization system for space-time and multivariate patterns (vis-stamp). IEEE Trans. Vis. Comput. Graph. 12(6), 1461–1474 (2006)

    Article  Google Scholar 

  19. Holten, D., Isenberg, P., Van Wijk, J.J., Fekete, J.D.: An extended evaluation of the readability of tapered, animated, and textured directed-edge representations in node-link graphs. In: 2011 IEEE Pacific Visualization Symposium, pp. 195–202. IEEE (2011)

    Google Scholar 

  20. Holten, D., Van Wijk, J.J.: A user study on visualizing directed edges in graphs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2299–2308. ACM (2009)

    Google Scholar 

  21. Horn, C., Klampfl, S., Cik, M., Reiter, T.: Detecting outliers in cell phone data: correcting trajectories to improve traffic modeling. Transp. Res. Rec. 2405(1), 49–56 (2014)

    Article  Google Scholar 

  22. Hunter, T., Abbeel, P., Bayen, A.: The path inference filter: model-based low-latency map matching of probe vehicle data. IEEE Trans. Intell. Transp. Syst. 15(2), 507–529 (2013)

    Article  Google Scholar 

  23. Jain, A., Murty, M., Flynn, P.: Estimating origin-destination flows using mobile phone location data. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  24. Jiang, S., Fiore, G.A., Yang, Y., Ferreira, J., Jr., Frazzoli, E., González, M.C.: A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, pp. 1–9 (2013)

    Google Scholar 

  25. Kapler, T., Wright, W.: Geotime information visualization. Inf. Vis. 4(2), 136–146 (2005)

    Article  Google Scholar 

  26. Kraak, M.J.: The space-time cube revisited from a geovisualization perspective. In: Proceedings of the 21st International Cartographic Conference, pp. 1988–1996. Citeseer (2003)

    Google Scholar 

  27. Krings, G., Calabrese, F., Ratti, C., Blondel, V.D.: Urban gravity: a model for inter-city telecommunication flows. J. Stat. Mech. Theor. Exp. 2009(07), L07003 (2009)

    Article  Google Scholar 

  28. Krüger, R., Thom, D., Wörner, M., Bosch, H., Ertl, T.: TrajectoryLenses - a set-based filtering and exploration technique for long-term trajectory data. Comput. Graph. Forum 32, 451–460 (2013)

    Article  Google Scholar 

  29. Lin, M., Hsu, W.J.: Mining GPS data for mobility patterns: a survey. Pervasive Mob. Comput. 12, 1–16 (2014)

    Article  Google Scholar 

  30. Lu, M., Wang, Z., Liang, J., Yuan, X.: OD-Wheel: visual design to explore OD patterns of a central region. In: 2015 IEEE Pacific Visualization Symposium (PacificVis), pp. 87–91. IEEE (2015)

    Google Scholar 

  31. Makse, H.A., Havlin, S., Stanley, H.E.: Modelling urban growth patterns. nature 377(6550), 608 (1995)

    Article  Google Scholar 

  32. OpenStreetMap (2020). https://www.geofabrik.de/

  33. Mazhelis, O.: Using recursive Bayesian estimation for matching GPS measurements to imperfect road network data. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 1492–1497. IEEE (2010)

    Google Scholar 

  34. Newson, P., Krumm, J.: Hidden Markov map matching through noise and sparseness. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 336–343 (2009)

    Google Scholar 

  35. Ochieng, W.Y., Quddus, M., Noland, R.B.: Map-matching in complex urban road networks. Rev. Bras. Cartogr. 55(2), 1–14 (2003)

    Google Scholar 

  36. Orellana, D., Wachowicz, M., Andrienko, N., Andrienko, G.: Uncovering interaction patterns in mobile outdoor gaming. In: 2009 International Conference on Advanced Geographic Information Systems & Web Services, pp. 177–182. IEEE (2009)

    Google Scholar 

  37. Polisciuc, E., Alves, A., Bento, C., Machado, P.: Visualizing urban mobility. In: ACM SIGGRAPH 2013 Posters, SIGGRAPH 2013, Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2503385.2503511

  38. Polisciuc, E., et al.: Arc and swarm-based representations of customer’s flows among supermarkets. In: IVAPP, pp. 300–306 (2015)

    Google Scholar 

  39. Polisciuc, E., Cruz, P., Amaro, H., Maças, C., Machado, P.: Flow map of products transported among warehouses and supermarkets. In: VISIGRAPP (2: IVAPP), pp. 179–188 (2016)

    Google Scholar 

  40. Polisciuc, E., Maçãs, C., Assunção, F., Machado, P.: Hexagonal gridded maps and information layers: a novel approach for the exploration and analysis of retail data. In: SIGGRAPH ASIA 2016 Symposium on Visualization, p. 6. ACM (2016)

    Google Scholar 

  41. Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms for transport applications: state-of-the art and future research directions. Transp. Res. Part C Emerg. Technol. 15(5), 312–328 (2007)

    Article  Google Scholar 

  42. Ratti, C., Frenchman, D., Pulselli, R.M., Williams, S.: Mobile landscapes: using location data from cell phones for urban analysis. Environ. Plann. B. Plann. Des. 33(5), 727–748 (2006)

    Article  Google Scholar 

  43. Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko, N., Andrienko, G.: Visually driven analysis of movement data by progressive clustering. Inf. Vis. 7(3–4), 225–239 (2008)

    Article  Google Scholar 

  44. Scheepens, R., Willems, N., Van de Wetering, H., Andrienko, G., Andrienko, N., Van Wijk, J.J.: Composite density maps for multivariate trajectories. IEEE Trans. Vis. Comput. Graph. 17(12), 2518–2527 (2011)

    Article  Google Scholar 

  45. Schlaich, J., Otterstätter, T., Friedrich, M., et al.: Generating trajectories from mobile phone data. In: Proceedings of the 89th Annual Meeting Compendium of Papers, Transportation Research Board of the National Academies. Citeseer (2010)

    Google Scholar 

  46. Schneider, C.M., Belik, V., Couronné, T., Smoreda, Z., González, M.C.: Unravelling daily human mobility motifs. J. R. Soc. Interface 10(84), 20130246 (2013)

    Article  Google Scholar 

  47. Silva, P., Maças, C., Correia, J., Machado, P., Polisciuc, E.: ANTENNA: a tool for visual analysis of urban mobility based on cell phone data. In: VISIGRAPP (3: IVAPP), pp. 88–100 (2022)

    Google Scholar 

  48. Song, X., Ouyang, Y., Du, B., Wang, J., **ong, Z.: Recovering individual’s commute routes based on mobile phone data. Mob. Inf. Syst. 2017, 1–11 (2017)

    Google Scholar 

  49. Spretke, D., Bak, P., Janetzko, H., Kranstauber, B., Mansmann, F., Davidson, S.: Exploration through enrichment: a visual analytics approach for animal movement. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 421–424 (2011)

    Google Scholar 

  50. Tettamanti, T., Varga, I.: Mobile phone location area based traffic flow estimation in urban road traffic. In: Advances in Civil and Environmental Engineering, vol. 1, no. 1, pp. 1–15. Columbia International Publishing (2014)

    Google Scholar 

  51. Tomaszewski, B., MacEachren, A.M.: Geo-historical context support for information foraging and sensemaking: conceptual model, implementation, and assessment. In: 2010 IEEE Symposium on Visual Analytics Science and Technology, pp. 139–146. IEEE (2010)

    Google Scholar 

  52. Tominski, C., Schumann, H., Andrienko, G., Andrienko, N.: Stacking-based visualization of trajectory attribute data. IEEE Trans. Vis. Comput. Graph. 18(12), 2565–2574 (2012)

    Article  Google Scholar 

  53. Vajakas, T., Vajakas, J., Lillemets, R.: Trajectory reconstruction from mobile positioning data using cell-to-cell travel time information. Int. J. Geogr. Inf. Sci. 29(11), 1941–1954 (2015)

    Article  Google Scholar 

  54. Von Landesberger, T., Brodkorb, F., Roskosch, P., Andrienko, N., Andrienko, G., Kerren, A.: MobilityGraphs: visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering. IEEE Trans. Vis. Comput. Graph. 22(1), 11–20 (2015)

    Article  Google Scholar 

  55. Wang, H., Calabrese, F., Di Lorenzo, G., Ratti, C.: Transportation mode inference from anonymized and aggregated mobile phone call detail records. In: 13th International IEEE Conference on Intelligent Transportation Systems, pp. 318–323. IEEE (2010)

    Google Scholar 

  56. Ware, C., Arsenault, R., Plumlee, M., Wiley, D.: Visualizing the underwater behavior of humpback whales. IEEE Comput. Graph. Appl. 26(4), 14–18 (2006)

    Article  Google Scholar 

  57. Widhalm, P., Yang, Y., Ulm, M., Athavale, S., González, M.C.: Discovering urban activity patterns in cell phone data. Transportation 42(4), 597–623 (2015)

    Article  Google Scholar 

  58. Wood, J., Dykes, J., Slingsby, A.: Visualisation of origins, destinations and flows with OD maps. Cartogr. J. 47(2), 117–129 (2010)

    Article  Google Scholar 

  59. Wood, J., Slingsby, A., Dykes, J.: Visualizing the dynamics of London’s bicycle-hire scheme. Cartographica Int. J. Geogr. Inf. Geovis. 46(4), 239–251 (2011)

    Google Scholar 

  60. Zeng, W., Fu, C.W., Müller Arisona, S., Erath, A., Qu, H.: Visualizing waypoints-constrained origin-destination patterns for massive transportation data. Comput. Graph. Forum 35, 95–107 (2016)

    Article  Google Scholar 

  61. Zheng, Y., Zhang, L., **e, X., Ma, W.Y.: Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of the 18th International Conference on World Wide Web, pp. 791–800 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, P., Maçãs, C., Correia, J., Machado, P., Polisciuc, E. (2023). ANTENNA: Visual Analytics of Mobility Derived from Cellphone Data. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2022. Communications in Computer and Information Science, vol 1815. Springer, Cham. https://doi.org/10.1007/978-3-031-45725-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45725-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45724-1

  • Online ISBN: 978-3-031-45725-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation