A Quantitative and Qualitative Analysis on a GAN-Based Face Mask Removal on Masked Images and Videos

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022)

Abstract

In 2020 and beyond, there are more and more opportunities to communicate with others while wearing a face mask. Since masks hide the mouth and facial muscles, it becomes more challenging to convey facial expressions to others while wearing a face mask. In this study, we propose using generative adversarial networks (GAN) to complement facial regions hidden by masks on images and videos. We defined the custom loss function that focuses on the error of the feature point coordinates of the face and the pixels in the masked region. As a result, we were able to generate higher-quality images than existing methods. Even when the input was video-based, our approach generated high-quality videos with fewer jittering and pixel errors than existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 64.19
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 80.24
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Myheritage deep nostalgia. https://www.myheritage.jp/deep-nostalgia

  2. Anwar, A., Raychowdhury, A.: Masked face recognition for secure authentication. ar**v abs/2008.11104 (2020)

    Google Scholar 

  3. Cai, J., Han, H., Shan, S., Chen, X.: FCSR-GAN: joint face completion and super-resolution via multi-task learning. IEEE Trans. Biom. Behav. Identity Sci. 2(2), 109–121 (2020). https://doi.org/10.1109/TBIOM.2019.2951063

    Article  Google Scholar 

  4. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014)

    Google Scholar 

  5. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. 36(4), 107:1–107:14 (2017). (Proc. of SIGGRAPH 2017)

    Google Scholar 

  6. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5967–5976 (2017). https://doi.org/10.1109/CVPR.2017.632

  7. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4396–4405 (2019). https://doi.org/10.1109/CVPR.2019.00453

  8. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8107–8116 (2020). https://doi.org/10.1109/CVPR42600.2020.00813

  9. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10(60), 1755–1758 (2009)

    Google Scholar 

  10. Lundqvist, D., Flykt, A., Öhman, A.: The Karolinska Directed Emotional Faces. Karolinska Institutet (1998)

    Google Scholar 

  11. Mirza, M., Osindero, S.: Conditional generative adversarial nets. ar**v abs/1411.1784 (2014)

    Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Telea, A.: An image inpainting technique based on the fast marching method. J. Graph. Tools 9, 23–34 (2004). https://doi.org/10.1080/10867651.2004.10487596

    Article  Google Scholar 

  14. Tsujimura, Y., Nishimura, S., Iijima, A., Kobayashi, R., Miyajima, N.: Comparing different levels of smiling with and without a surgical mask. J. Compr. Nurs. Res. 19(2), 3–9 (2020). https://doi.org/10.14943/95250

    Article  Google Scholar 

  15. Ud Din, N., Javed, K., Bae, S., Yi, J.: A novel GAN-based network for unmasking of masked face. IEEE Access 8, 44276–44287 (2020). https://doi.org/10.1109/ACCESS.2020.2977386

    Article  Google Scholar 

  16. Wang, M., Wen, X., Hu, S.: Faithful face image completion for HMD occlusion removal. In: 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct, pp. 251–256 (2019). https://doi.org/10.1109/ISMAR-Adjunct.2019.00-36

  17. **e, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 341–349 (2012)

    Google Scholar 

  18. Yoshihashi, H., Ienaga, N., Sugimoto, M.: Gan-based face mask removal using facial landmarks and pixel errors in masked region. In: the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, vol. 5, pp. 125–133 (2022). https://doi.org/10.5220/0010827500003124

  19. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.: Free-form image inpainting with gated convolution. In: 2019 IEEE/CVF International Conference on Computer Vision, pp. 4470–4479 (2019). https://doi.org/10.1109/ICCV.2019.00457

  20. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018). https://doi.org/10.1109/CVPR.2018.00577

  21. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018). https://doi.org/10.1109/CVPR.2018.00068

  22. Zhang, Z., Song, Y., Qi, H.: Age progression/regression by conditional adversarial autoencoder. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4352–4360 (2017). https://doi.org/10.1109/CVPR.2017.463

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Yoshihashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoshihashi, H., Ienaga, N., Sugimoto, M. (2023). A Quantitative and Qualitative Analysis on a GAN-Based Face Mask Removal on Masked Images and Videos. In: de Sousa, A.A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2022. Communications in Computer and Information Science, vol 1815. Springer, Cham. https://doi.org/10.1007/978-3-031-45725-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45725-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45724-1

  • Online ISBN: 978-3-031-45725-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation