Ridge Gap Waveguide Based Array Antenna for 5G/WiFi Applications

  • Conference paper
  • First Online:
Information Systems and Technologies (WorldCIST 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 800))

Included in the following conference series:

  • 144 Accesses

Abstract

This paper presents an efficient antenna configurations design with low dispersion, low loss antenna with high gain. It is based on SIGW technology. The feeding network is composed of two layers, the top layer comprises the top ground implemented on dielectric material Rogers RO4003C and the bottom layer includes the ridge and the surrounding periodic structure of vias implemented in dielectric material Rogers RO4350B. The ridge is branched to form power divider to feed the antenna array. The two slot antennas are implemented on the top ground of the top layer. It is analyzed using the Finite Deference Time Domain (FDTM) analysis (CST microwave studio) and fabricated using PCB technology. A triple band is achieved for WiFi application. It operates at 5.9, 6 and 6.1414 GHz with reasonable gain. The structure is fabricated and measured which finding reasonable agreement between both results. This antenna can also be used for energy harvesting at these bands, once connected with a rectifying circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kildal, P.-S.: Definition of artificially soft and hard surfaces for electromagnetic waves. Electron. Lett. 24(3), 168 (1988). https://doi.org/10.1049/el:19880112

    Article  Google Scholar 

  2. Bayat-Makou, N., Kishk, A.A.: Realistic air-filled TEM printed parallel-plate waveguide based on ridge gap waveguide. IEEE Trans. Microw. Theory Tech. 66(5), 2128–2140 (2018)

    Article  Google Scholar 

  3. Rajo-Iglesias, E., Kildal, P.-S.: Numerical studies of bandwidth of parallel-plate cut-off realised by a bed of nails, corrugations and mushroom-type electromagnetic bandgap for use in gap waveguides. IET Microw. Antennas Propag. 5(3), 282–289 (2011)

    Article  Google Scholar 

  4. Zarifi, D., Farahbakhsh, A., Uz Zaman, A., Kildal, P.-S.: Design and fabrication of a high-gain 60-GHz corrugated slot antenna array with ridge gap waveguide distribution layer. IEEE Trans. Antennas Propag. 64(7), 2905–2913 (2016)

    Article  Google Scholar 

  5. Sorkherizi, M.S., Kishk, A.A.: Fully printed gap waveguide with facilitated design properties. IEEE Microw. Wirel. Compon. Lett. 26(9), 657–659 (2016)

    Article  Google Scholar 

  6. Salah El-Din, M.S.H., Shams, S.I., Allam, A.M.M.A., Gaafar, A., Elhennawy, H.M., Sree, M.F.A.: Design of an E-sectoral horn based on PRGW technology for 5G applications. Int. J. Microw. Wirel. Technol. 15(6), 1082–1090 (2022). https://doi.org/10.1017/S1759078722001076

    Article  Google Scholar 

  7. Salah El-Din, M.S.H., Shams, S.I., Allam, A.M.M.A., Gaafar, A., Elhennawy, H.M., Sree, M.F.A.: SIGW based MIMO antenna for satellite down-link applications. IEEE Access 10, 35965–35976 (2022). https://doi.org/10.1109/ACCESS.2022.3160473

    Article  Google Scholar 

  8. El-Din, M.S.H., Salah, S.I., Shams, A.M.M.A., Allam, M.F.A.S., Gaafar, A., El-Hennawy, H.: Bow-tie slot antenna loaded with superstrate layers for 5G/6G applications. In: 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), pp. 1561–1562. IEEE (2021)

    Google Scholar 

  9. Taha, A., Allam, A.M.M.A., Wahba, W., Sree, M.F.A.: Printed ridge gap waveguide based Radome antenna for k-ka applications. In: 2021 15th European Conference on Antennas and Propagation (EuCAP), pp. 1–5. IEEE (2021)

    Google Scholar 

  10. Sree, M.F.A., Allam, A.M.M.A., Mohamed, H.A.: Design and implementation of multiband metamaterial antennas. In: 2020 International Applied Computational Electromagnetics Society Symposium (ACES), pp. 1–2. IEEE (2020)

    Google Scholar 

  11. Wossugieniri, O., Faezi, H., Fallah, M.: Compact 2-way H-plane power dividers for a rectangular waveguide in Ku band. In: 2018 22nd International Microwave and Radar Conference (MIKON), Poznan, pp. 298-301 (2018)

    Google Scholar 

  12. Xu, S., Tian, X., Xu, L.: A 4-way broadband power divider based on the suspended microstrip line. In: 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, pp. 1–3 (2018)

    Google Scholar 

  13. Yang, T.Y., Hong, W., Zhang, Y.: Wideband millimeter-wave substrate integrated waveguide cavity-backed rectangular patch antenna. IEEE Antennas Wirel. Propag. Lett. 13, 205–208 (2014). https://doi.org/10.1109/LAWP.2014.2300194

    Article  Google Scholar 

  14. Shams, S.I., Kishk, A.A.: Wide band power divider based on Ridge gap waveguide. In: 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Montreal, QC, pp. 1–2 (2016)

    Google Scholar 

  15. Ahmadi, B., Banai, A.: A power divider/combiner realized by ridge gap waveguide technology for millimeter wave applications. In: 2016 Fourth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), Tehran, pp. 5–8 (2016)

    Google Scholar 

  16. Liu, D., et al.: User association in 5G networks: a survey and an outlook. IEEE Commun. Surv. Tutor. 18(2), 1018–1044 (2016)

    Google Scholar 

  17. Araniti, G., Condoluci, M., Scopelliti, P., Molinaro, A., Iera, A.: Multicasting over emerging 5G networks: challenges and perspectives. IEEE Netw. 31(2), 80–89 (2017)

    Article  Google Scholar 

  18. Pozar, D.M.: Microwave Engineering, 4th Edn., pp. 72–75. John Wiley & Sons, New York (2011)

    Google Scholar 

  19. Ferrando-Rocher, M., Herranz-Herruzo, J.I., Valero-Nogueira, A., Bernardo-Clemente, B.: Full-metal K-Ka dual-band shared-aperture array antenna fed by combined ridge-groove gap waveguide. IEEE Antennas Wirel. Propag. Lett. 18(7), 1463–1467 (2019)

    Article  Google Scholar 

  20. Ferrando-Rocher, M., Valero-Nogueira, A., Herranz-Herruzo, J.I., Teniente, J.: 60 GHz single-layer slot-array antenna fed by groove gap waveguide. IEEE Antennas Wirel. Propag. Lett. 18(5), 846–850 (2019)

    Article  Google Scholar 

  21. Liu, J., Vosoogh, A., Zaman, A.U., Yang, J.: Design and fabrication of a high-gain 60-ghz cavity-backed slot antenna array fed by inverted microstrip gap waveguide. IEEE Trans. Antennas Propag. 65(4), 2117–2122 (2017)

    Article  MathSciNet  Google Scholar 

  22. Farahbakhsh, A., Zarifi, D., Zaman, A.U.: 60-GHz groove gap waveguide based wideband h-plane power dividers and transitions: for use in high-gain slot array antenna. IEEE Trans. Microw. Theory Tech. 65(11), 4111–4121 (2017)

    Article  Google Scholar 

  23. Ferrando-Rocher, M., Herranz-Herruzo, J.I., Valero-Nogueira, A., Bernardo-Clemente, B.: Single-layer sequential rotation network in gap waveguide for a wideband low-profile circularly polarized array antenna. IEEE Access 10, 62157–62163 (2022). https://doi.org/10.1109/ACCESS.2022.3182336

    Article  Google Scholar 

  24. Li, T., Chen, Z.N.: Wideband sidelobe-level reduced ka -band metasurface antenna array fed by substrate-integrated gap waveguide using characteristic mode analysis. IEEE Trans. Antennas Propag. 68(3), 1356–1365 (2020). https://doi.org/10.1109/TAP.2019.2943330

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham kamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Allam, A.M.M.A., kamal, H., Ghouz, H.H.M., Sree, M.F.A. (2024). Ridge Gap Waveguide Based Array Antenna for 5G/WiFi Applications. In: Rocha, A., Adeli, H., Dzemyda, G., Moreira, F., Colla, V. (eds) Information Systems and Technologies. WorldCIST 2023. Lecture Notes in Networks and Systems, vol 800. Springer, Cham. https://doi.org/10.1007/978-3-031-45645-9_58

Download citation

Publish with us

Policies and ethics

Navigation