Dynamic Multimodal Function Optimization: An Evolutionary-Mean Shift Approach

  • Chapter
  • First Online:
New Metaheuristic Schemes: Mechanisms and Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 246))

  • 112 Accesses

Abstract

Numerous metaheuristic-based dynamic optimization algorithms have emerged recently. While these algorithms excel in locating a single global optimum, they fall short in identifying multiple optimal solutions. The primary objective of dynamic multimodal optimization is to identify several optimal solutions for a problem where the objective function changes over time. The discovery of multiple optimal solutions, both global and local, holds significant importance for numerous applications. The best implementable alternative may not always be the optimal solution due to practical limitations. Surprisingly, the literature has paid scant attention to the problem of dynamic multimodal optimization using evolutionary principles. Conversely, mean shift, a nonparametric iterative process, is capable of detecting local maxima in a density function represented by a sample set. Mean shift exhibits adaptive qualities that enable it to identify local maxima in dynamic environments. In this chapter, we present a mean shift approach to detect global and local optima in dynamic optimization problems. The presented method modifies the search strategy of mean shift by considering both density and fitness values of candidate solutions. To expedite the convergence process, a competitive memory and dynamic strategy are incorporated to leverage valuable information from previous environments. Consequently, the present approach effectively identifies a significant number of global and local optima in dynamic environments. To showcase its performance, we compare the present algorithm with well-known dynamic optimization methods using the CEC competition benchmark generator. Experimental results demonstrate the present scheme's high accuracy and robustness, positioning it as a highly competitive solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halder, U., Das, S., Maity, D.: A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments. IEEE Trans. Cybern. 43(3), 881–897 (2013)

    Article  Google Scholar 

  2. Das, S., Mandal, A., Mukherjee, R.: An adaptive differential evolution algorithm for global optimization in dynamic environments. IEEE Trans. Cybern. 44(6), 966–978 (2014)

    Article  Google Scholar 

  3. Mavrovouniotis, M., Müller, F.M., Yang, S.: Ant colony optimization with local search for dynamic traveling salesman problems. IEEE Trans. Cybern. 47(7), 1743–1756 (2017)

    Article  Google Scholar 

  4. Sadollah, A., Sayyaadi, H., Yadav, A.: A dynamic metaheuristic optimization model inspired by biological nervous systems: neural network algorithm. Appl. Soft Comput. 71, 747–782 (2018)

    Article  Google Scholar 

  5. Baykasoğlu, A., Ozsoydan, F.B.: Evolutionary and population-based methods versus constructive search strategies in dynamic combinatorial optimization. Inf. Sci. 420, 159–183 (2017)

    Article  MATH  Google Scholar 

  6. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evolut. Comput. 6, 1–24 (2012)

    Google Scholar 

  7. Tinós, R., Yang, S.: Analysis of fitness landscape modifications in evolutionary dynamic optimization. Inf. Sci. 282, 214–236 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mavrovouniotis, M., Li, C., Yang, S.: A survey of swarm intelligence for dynamic optimization: algorithms and applications. Swarm Evol. Comput. 33, 1–17 (2017)

    Article  Google Scholar 

  9. Topcuoglu, L.A.R.: Impact of sensor-based change detection schemes on the performance of evolutionary dynamic optimization techniques. Soft. Comput. 22(14), 4741–4762 (2018)

    Article  Google Scholar 

  10. Kazemi, J., Hossein, K., Firouzjaee, A., Meybodi, M.R.: An adaptive bi-flight cuckoo search with variable nests for continuous dynamic optimization problems. Appl. Intell. 48(1), 97–117 (2018)

    Google Scholar 

  11. Lissovoi, A., Witt, C.: A runtime analysis of parallel evolutionary algorithms in dynamic optimization. Algorithmica 78(2), 641–659 (2017)

    Google Scholar 

  12. Kazemi, J., Alireza, K., Mohammad, R., Meybodi, R.: New measures for comparing optimization algorithms on dynamic optimization problems. Nat. Comput. (2019) (in press)

    Google Scholar 

  13. Au, C.-K., Leung, H.-F.: Cooperative coevolutionary algorithms for dynamic optimization: an experimental study. Evol. Intell. 7(4), 201–218 (2014)

    Google Scholar 

  14. Zuo, X., **ao, L.: A DE and PSO based hybrid algorithm for dynamic optimization problems. Soft. Comput. 18(7), 1405–1424 (2014)

    Google Scholar 

  15. Cao, L., Xu, L., Goodman, E.D.: A collaboration-based particle swarm optimizer with history-guided estimation for optimization in dynamic environments. Expert Syst. Appl. 120, 1–13 (2019)

    Google Scholar 

  16. Liu, L., Yang, S., Wang, D.: Particle swarm optimization with composite particles in dynamic environments. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 40(6), 1634–1648 (2010)

    Article  Google Scholar 

  17. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)

    Article  Google Scholar 

  18. Mendes, R., Mohais, A.S.: DynDE: a differential evolution for dynamic optimization problems. In: Proceeding of the IEEE Congress on Evolutionary Computation, vol. 3, pp. 2808–2815 (2005)

    Google Scholar 

  19. Li, C., Yang, S.: A general framework of multipopulation methods with clustering in undetectable dynamic environments. IEEE Trans. Evol. Comput. 16(4), 556–577 (2012)

    Article  Google Scholar 

  20. Brest, J., Zamuda, A., Boskovic, B., Maucec, M.S., Zumer, V.: Dynamic optimization using self-adaptive differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 415–422 (2009)

    Google Scholar 

  21. Mukherjee, R., Debchoudhury, S., Das, S.: Modified differential evolution with locality induced genetic operators for dynamic optimization. Eur. J. Oper. Res. 253(2), 337–355 (2016)

    Article  MATH  Google Scholar 

  22. Bravo, Y., Luque, G., Alba, E.: Global memory schemes for dynamic optimization. Nat. Comput. 15(2), 319–333 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, C., Yang, S.: A clustering particle swarm optimizer for dynamic optimization. In: Proceedings of the 2009 IEEE Congress on Evolutionary Computation, pp. 439–446 (2009)

    Google Scholar 

  24. Wong, K.-C., Chun-Ho, W., Mok, R.K.P., Peng, C.: Evolutionary multimodal optimization using the principle of locality. Inf. Sci. 194, 138–170 (2012)

    Article  Google Scholar 

  25. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of 2nd International Conference Genetic Algorithms, pp. 41–49 (1987)

    Google Scholar 

  26. De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. dissertation, University of Michigan, Ann Arbor (1975)

    Google Scholar 

  27. Li, J.-P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)

    Article  Google Scholar 

  28. Ramírez-Ortegón, M.A., Tapia, E., Ramírez-Ramírez, L.L., Rojas, R., Cuevas, E.: Transition pixel: a concept for binarization based on edge detection and gray-intensity histograms. Pattern Recogn. 43(4), 1233–1243 (2010)

    Article  MATH  Google Scholar 

  29. Liang, J.J., Qu, B.Y., Mao, X.B., Niu, B., Wang, D.Y.: Differential evolution based on fitness Euclidean distance ratio for multimodal optimization. Neurocomputing 137, 252–260 (2014)

    Article  Google Scholar 

  30. Miller, B.L., Shaw, M.J.: Genetic algorithms with dynamic niche sharing for multimodal function optimization. In: Proceedings of the 3rd IEEE Conference on Evolutionary Computation, pp. 786–791 (1996)

    Google Scholar 

  31. Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In: Evolutionary Computation, CEC2004. Congress (2004)

    Google Scholar 

  32. Biswas, S., Das, S., Kundu, S., Patra, G.R.: Utilizing time-linkage property in DOPs: an information sharing based articial bee colony algorithm for tracking multiple optima in uncertain environments. Soft. Comput. 18, 1199–1212 (2014)

    Article  Google Scholar 

  33. Das, S., Maity, S., Qu, B.Y., Suganthan, P.N.: Real-parameter evolutionary multimodal optimization—a survey of the state-of-the-art. Swarm Evol. Comput. 1(2), 71–88 (2011)

    Article  Google Scholar 

  34. Mengshoel, O.J., Galán, S.F., De Dios, A.: Adaptive generalized crowding for genetic algorithms. Inf. Sci. 258, 140–159 (2014)

    Article  MathSciNet  Google Scholar 

  35. Yazdani, S., Nezamabadi-pour, H., Kamyab, S.: A gravitational search algorithm for multimodal optimization. Swarm Evol. Comput. 14, 1–14 (2014)

    Article  Google Scholar 

  36. Chen, C.-H., Liu, T.-K., Chou, J.-H.: A novel crowding genetic algorithm and its applications to manufacturing robots. IEEE Trans. Ind. Inf. 10(3), 1705–1716 (2014)

    Article  Google Scholar 

  37. Chang, W.-D.: A modified particle swarm optimization with multiple subpopulations for multimodal function optimization problems. Appl. Soft Comput. 33, 170–182 (2015)

    Article  Google Scholar 

  38. Lianga, Y., Kwong-Sak, L.: Genetic algorithm with adaptive elitist-population strategies for multimodal function optimization. Appl. Soft Comput. 11, 2017–2034 (2011)

    Article  Google Scholar 

  39. Qu, B.Y., Suganthan, P.N., Das, S.: A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans. Evol. Comput. 17(3), 387–402 (2013)

    Article  Google Scholar 

  40. Sacco, W.F., Henderson, N., Rios-Coelho, A.C.: Topographical clearing differential evolution: a new method to solve multimodal. Prog. Nucl. Energy 71, 269–278 (2014)

    Article  Google Scholar 

  41. Cheng, S., Lu, H., Guo, Y., Lei, X., Liang, J., Chen, J., Shi, Y.: Dynamic multimodal optimization: a preliminary study. In: 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand (2019)

    Google Scholar 

  42. Kaiwartya, O., Kumar, S., Lobiyal, D.K., Tiwari, P.K., Abdullah, A.H., Hassan, A.N.: Multiobjective dynamic vehicle routing problem and time seed based solution using particle swarm optimization. J. Sensors 2015 (2015)

    Google Scholar 

  43. Okulewicz, M., Mańdziuk, J.: A metaheuristic approach to solve dynamic vehicle routing problem in continuous search space. Swarm Evol. Comput. 48(March), 44–61 (2019)

    Article  Google Scholar 

  44. Lei, Y., Jasin, S., Sinha, A.: Joint dynamic pricing and order fulfillment for E−commerce retailers. Manuf. Serv. Oper. Manag. 20(2), 269–284 (2018)

    Article  Google Scholar 

  45. Saharan, S., Bawa, S., Kumar, N.: Dynamic pricing techniques for intelligent transportation system in smart cities: a systematic review. Comput. Commun. 150, 603–625 (2020)

    Article  Google Scholar 

  46. Manjunath, A., Raychoudhury, V., Saha, S.: Ant-taxi to pie-passenger: optimizing routes and time for distributed taxi ride sharing. In: 2020 International Conference on COMmunication System & NETworkS, COMSNETS 2020, pp. 736–743 (2020)

    Google Scholar 

  47. Wu, H., Qian, S., Liu, Y., Wang, D., Guo, B.: An immune-based response particle swarm optimizer for knapsack problems in dynamic environments. Soft. Comput. 24(20), 15409–15425 (2020)

    Article  Google Scholar 

  48. Hao, X. et al.: Dynamic Knapsack Optimization Towards Efficient Multi-channel Sequential Advertising (2020)

    Google Scholar 

  49. Nguyen, V.Q., Johnson, R.T., Sup, F.C., Umberger, B.R.: Bilevel optimization for cost function determination in dynamic simulation of human gait. IEEE Trans. Neural Syst. Rehabil. Eng. 27(7), 1426–1435 (2019)

    Article  Google Scholar 

  50. Luo, W., Lin, X., Zhu, T., Xu, P.: A clonal selection algorithm for dynamic multimodal function optimization. Swarm Evol. Comput. (2018) (in press)

    Google Scholar 

  51. Li, C., Yang, S.: A clustering particle swarm optimizer for dynamic optimization. In: 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, pp. 439–446 (2009)

    Google Scholar 

  52. Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21, 32–40 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tao, W., **, H., Zhang, Y.: Color image segmentation based on mean shift and normalized cuts. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 37(5), 1382–1389 (2007)

    Article  Google Scholar 

  54. Comaniciu, D., Meer, P.: Mean shift: a robust approach towards feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  55. Comaniciu, D.: An algorithm for data-driven bandwidth selection. IEEE Trans. Pattern Anal. Mach. Intell. 25, 281–288 (2003)

    Article  Google Scholar 

  56. Anand, S., Mittal, S., Tuzel, O., Meer, P.: Semi-supervised kernel mean shift clustering. EEE Trans. Pattern Anal. Mach. Intell. 36(6), 1201–1215 (2014)

    Article  Google Scholar 

  57. DeMenthon, D., Doermann, D.: Video retrieval using spatio-temporal descriptors pages. In: Proceedings of the Eleventh ACM International Conference on Multimedia, pp. 508–517 (2003)

    Google Scholar 

  58. Zivkovic, Z., Krose, B.: An EM-like algorithm for color-histogram-based object tracking. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 798–803 (2004)

    Google Scholar 

  59. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

    Article  Google Scholar 

  60. Fashing, M., Tomasi, C.: Mean shift is a bound optimization. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 471–474 (2005)

    Article  Google Scholar 

  61. Horová, I., Koláček, J., Zelinka, J.: Kernel Smoothing in Matlab. World Scientific (2012)

    Google Scholar 

  62. Gramacki, A.: Nonparametric Kernel Density Estimation and Its Computational Aspects. Springer (2018)

    Google Scholar 

  63. Scott, D.W.: Scott’s rule. Wires Comput. Statist. 2(4), 497–502 (2010)

    Article  Google Scholar 

  64. Li, S., Yang S., Nguyen T., Yu E., Yao X., ** Y., Beyer H.G., Suganthan P.N.: Benchmark generator for CEC 2009 competition on dynamic optimization. Technical Report 2008, Department of Computer Science, University of Leicester, U.K., October 2009. http://hdl.handle.net/2086/11893

  65. Brest, J., Zamuda, A., Bǒskovíc, B., Maǔcec, M.S., Žumer, V.: Dynamic optimization using self-adaptive differential evolution. In: 2009 IEEE Congress on Evolutionary Computation, CEC 2009, pp. 415–422 (2009)

    Google Scholar 

  66. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 80–83 (1945)

    Google Scholar 

  67. Cuevas, E., González, A., Fausto, F., Zaldívar, D., Pérez-Cisneros, M.: Multithreshold segmentation by using an algorithm based on the behavior of locust swarms. Math. Probl. Eng. (2015)

    Google Scholar 

  68. Zaldivar, D., Morales, B., Rodríguez, A., Valdivia-G, A., Cuevas, E., Pérez-Cisneros, M.: A novel bio-inspired optimization model based on Yellow Saddle Goatfish behavior. Biosystems 174, 1–21 (2018)

    Article  Google Scholar 

  69. Cuevas, E., Gálvez, J., Hinojosa, S., Avalos, O., Zaldívar, D., Pérez-Cisneros, M.: A comparison of evolutionary computation techniques for IIR model identification. J. Appl. Math. (2014)

    Google Scholar 

  70. Bandyopadhyay, R., Basu, A., Cuevas, E., Sarkar, R.: Harris Hawks optimisation with simulated annealing as a deep feature selection method for screening of COVID-19 CT-scans. Appl. Soft Comput. 111, 107698 (2021)

    Article  Google Scholar 

  71. Cuevas, E., Wario, F., Osuna-Enciso, V., Zaldivar, D., Pérez-Cisneros, M.: Fast algorithm for multiple-circle detection on images using learning automata. IET Image Proc. 6(8), 1124–1135 (2012)

    Article  MathSciNet  Google Scholar 

  72. Hinojosa, S., Dhal, K.G., Abd Elaziz, M., Oliva, D., Cuevas, E.: Entropy-based imagery segmentation for breast histology using the stochastic fractal search. Neurocomputing 321, 201–215 (2018)

    Article  Google Scholar 

  73. Cuevas, E., Zaldivar, D., Pérez-Cisneros, M.: Seeking multi-thresholds for image segmentation with learning automata. Mach. Vis. Appl. 22, 805–818 (2011)

    Article  Google Scholar 

  74. Ibrahim, R.A., Elaziz, M.A., Oliva, D., Cuevas, E., Lu, S.: An opposition-based social spider optimization for feature selection. Soft. Comput. 23, 13547–13567 (2019)

    Article  Google Scholar 

  75. Xu, Q., Lei, W., Si, J.: Predication based immune network for multimodal function optimization. Eng. Appl. Artif. Intell. 23, 495–504 (2010)

    Article  Google Scholar 

  76. Cuevas, E., González, M., Zaldivar, D., Pérez-Cisneros, M., García, G.: An Algorithm for Global Optimization Inspired by Collective Animal Behavior. Discrete Dynamics in Nature and Society, vol 2012, Article ID 638275

    Google Scholar 

  77. Cuevas, E., Gonzalez, M.: An optimization algorithm for multimodal functions inspired by collective animal behavior. Soft. Comput. 17, 489–502 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cuevas, E., Zaldívar, D., Pérez-Cisneros, M. (2024). Dynamic Multimodal Function Optimization: An Evolutionary-Mean Shift Approach. In: New Metaheuristic Schemes: Mechanisms and Applications. Intelligent Systems Reference Library, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-031-45561-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45561-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45560-5

  • Online ISBN: 978-3-031-45561-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation