Silicone-Based Coatings for High-Temperature Applications

  • Chapter
  • First Online:
Coatings for High-Temperature Environments

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 293 Accesses

Abstract

This chapter explores the use of silicone-based coatings for high-temperature applications. These coatings have unique properties that make them ideal for use in environments that experience extreme temperatures, such as aerospace, automotive, and industrial applications. This chapter also discusses the benefits of using these coatings, including their excellent thermal stability, resistance to oxidation and corrosion, and ability to maintain their properties over a wide temperature range. This chapter also looks at some of the key factors that influence the performance of silicone coatings, including temperature, stress, exposure, and curing time. In addition to the benefits mentioned above, silicone-based coatings offer other advantages such as flexibility, adhesion to various substrates, and chemical resistance. These properties make them suitable for use in harsh environments when exposed to chemicals, abrasion, and weathering. Finally, the chapter highlights the importance of curing conditions on the coating performance. In conclusion, silicone coatings play a vital role in many industries, and understanding their properties is essential for achieving optimal performance and durability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BTSE:

Bis-[Triethoxysilyl] Ethane

PDMS:

Polydimethylsiloxane

EO:

Ethylene Oxide

BO:

Butylene Oxide

HCR:

Heat Cured Rubber

LSR:

Liquid Silicone Rubber

RTV:

Room Temperature Vulcanization

TGA:

Thermogravimetric Analysis

DSC:

Differential Scanning Calorimetry

DMA:

Dynamic Mechanical Analysis

DVS:

Dynamic Vapour Sorption

References

  1. Andriot, M., Chao, S.H., Colas, A., Cray, S.E., de Buyl, F., DeGroot, J.V., Dupont, A., Easton, T., Garaud, J.L., Gerlach, E., Gubbels, F.: Silicones in industrial applications. Inorg. Polym. 61–161 (2007)

    Google Scholar 

  2. Clope, R.W., Glaser, M., Madson, W.H.: Silicone resins for organic coatings (1970)

    Google Scholar 

  3. Houstain, D.P.: Silicone coating adds years to jet equipment service. Modern Paint Coat. 9, 42–43 (1975)

    Google Scholar 

  4. Wang, W., Zammarano, M., Shields, J.R., Knowlton, E.D., Kim, I., Gales, J.A., Hoehler, M.S., Li, J.: A novel application of silicone-based flame-retardant adhesive in plywood. Constr. Build. Mater. 189, 448–459 (2018)

    Article  CAS  Google Scholar 

  5. Zarei, H., Marulli, M.R., Paggi, M., Pietrogrande, R., Üffing, C., Weißgraeber, P.: Adherend surface roughness effect on the mechanical response of silicone-based adhesive joints. Eng. Fract. Mech. 240, 107353 (2020)

    Article  Google Scholar 

  6. Eduok, U., Faye, O., Szpunar, J.: Recent developments and applications of protective silicone coatings: a review of PDMS functional materials. Prog. Org. Coat. 111, 124–163 (2017)

    Article  CAS  Google Scholar 

  7. Cornelius, D.J., Monroe, C.M.: The unique properties of silicone and fluorosilicone elastomers. Polym. Eng. Sci. 25(8), 467–473 (1985)

    Article  CAS  Google Scholar 

  8. Glaser, M.A.: Silicone in protective coatings. Ind. Eng. Chem. 46(11), 2334–2342 (1954)

    Article  CAS  Google Scholar 

  9. Atici, Y., Emik, S., Kırbaslar, Şİ: Effect of siloxane chain length on thermal, mechanical, and chemical characteristics of UV (ultraviolet)-curable epoxy acrylate coatings. J. Coat. Technol. Res. 19(2), 439–451 (2022)

    Article  CAS  Google Scholar 

  10. Plueddemann, E.P.: Silane Coupling Agents. Springer, Berlin (1991)

    Book  Google Scholar 

  11. Zomorodian, A., Brusciotti, F., Fernandes, A., Carmezim, M.J., Moura e Silva, T., Fernandes, J.C.S., et al.: Anti-corrosion performance of a new silane coating for corrosion protection of AZ31 magnesium alloy in Hank’s solution. Surf. Coat. Technol. 206(21), 4368–4375 (2012)

    Google Scholar 

  12. Pinto, R., Carmezim, M.J., Ferreira, M.G.S., Montemor, M.F.: A two-step surface treatment, combining anodisation and silanisation, for improved corrosion protection of the Mg alloy WE54. Prog. Org. Coat. 69(2), 143–149 (2010)

    Google Scholar 

  13. Xue, D., Tan, Z., Schulz, M.J., Vanooij, W.J., Sankar, J., Yun, Y., et al.: Corrosion studies of modified organosilane coated magnesium yttrium alloy in different environments. Mater. Sci. Eng. C 32(5), 1230–1236 (2012)

    Google Scholar 

  14. Colas, A., Curtis, J.: Silicones, Handbook of Polymer Applications in Medicine and Medical Devices. Elsevier Inc., Amsterdam, The Netherlands, pp. 131–143 (2013)

    Google Scholar 

  15. Wolf, M.P., Salieb-Beugelaar, G.B., Hunziker, P.: PDMS with designer functionalities—Properties, modifications strategies, and applications. Prog. Polym. Sci. 83, 97–134 (2018)

    Article  CAS  Google Scholar 

  16. Seethapathy, S., Gorecki, T.: Applications of polydimethylsiloxane in analytical chemistry: a review. Anal. Chim. Acta 750, 48–62 (2012)

    Article  CAS  Google Scholar 

  17. Sia, S.K., Whitesides, G.M.: Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576 (2003)

    Article  CAS  Google Scholar 

  18. LeGrow, G.E., Petroff, L.J.: Silicone polyether copolymers: synthetic methods and chemical compositions. In: Silicone Surfactants, pp. 49–64 (2019)

    Google Scholar 

  19. Narisawa, M.: Silicone resin applications for ceramic precursors and composites. Materials 3(6), 3518–3536 (2010)

    Article  CAS  Google Scholar 

  20. Warrick, E.L., Pierce, O.R., Polmanteer, K.E., Saam, J.C.: Silicone elastomer developments 1967–1977. Rubber Chem. Technol. 52(3), 437–525 (1979)

    Article  CAS  Google Scholar 

  21. Ullah, I., Akbar, M., Khan, H.A.: Enhancement of electrical, mechanical and thermal properties of silicone-based coating with aluminatrihydrate/silica for ceramic insulators. Mater. Chem. Phys. 282, 125972 (2022)

    Article  CAS  Google Scholar 

  22. Laroche, A., Bottone, D., Seeger, S., Bonaccurso, E.: Silicone nanofilaments grown on aircraft alloys for low ice adhesion. Surf. Coat. Technol. 410, 126971 (2021)

    Article  CAS  Google Scholar 

  23. Chen, H., Wei, H., Chen, M., Meng, F., Li, H., Li, Q.: Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes. Appl. Surf. Sci. 283, 525–531 (2013)

    Article  CAS  Google Scholar 

  24. Izmitli, A., Ngunjiri, J., Lan, T., Pacholski, M.L., Smith, R., Langille, M., Roggow, T., Henderson, K., Kalantar, T., Manna, J.: Impact of silicone additives on slip/mar performance and surface characteristics of waterborne acrylic coatings. Prog. Org. Coat. 131, 145–151 (2019)

    Article  CAS  Google Scholar 

  25. Verma, S., Mohanty, S., Nayak, S.K.: Preparation of hydrophobic epoxy–polydimethylsiloxane–graphene oxide nanocomposite coatings for antifouling application. Soft Matter. 16(5), 1211–1226 (2020)

    Article  CAS  Google Scholar 

  26. Zielecka, M., Rabajczyk, A., Pastuszka, Ł, Jurecki, L.: Flame resistant silicone-containing coating materials. Coatings 10(5), 479 (2020)

    Article  CAS  Google Scholar 

  27. Li, F., Chen, L., Ji, L., Ju, P., Li, H., Zhou, H., Chen, J.: Ultralow friction and corrosion resistant polyurethane/silicone oil composite coating reinforced by functionalized graphene oxide. Compos. A Appl. Sci. Manuf. 148, 106473 (2021)

    Article  CAS  Google Scholar 

  28. Wang, H.Q., Li, Y., Li, X.Y.: Preparation of organic silicone coating with high-temperature resistance. J. Bei**g Univ. Chem. Technol. 33(1), 59 (2006)

    Google Scholar 

  29. Bajpai, P., Bajpai, M.: Development of a high-performance hybrid epoxy silicone resin for coatings. Pigm. Resin Technol. 39(2), 96–100 (2010)

    Article  CAS  Google Scholar 

  30. Zhang, T., Jiang, B., Huang, Y.: UV-curable photosensitive silicone resins based on a novel polymerizable photoinitiator and GO-modified TiO2 nanoparticles. Compos. B Eng. 140, 214–222 (2018)

    Article  CAS  Google Scholar 

  31. Sampaio, F.N.C.S., Pinto, J.R.R., Turssi, C.P., Basting, R.T.: Effect of sealant application and thermal cycling on bond strength of tissue conditioners to acrylic resin. Braz. Dent. J. 24, 247–252 (2013)

    Article  Google Scholar 

  32. Tiwari, A., Hihara, L.H.: High silicone content barrier coatings for corrosion protection of metals. In: Tri-Service Corrosion Conference (2007)

    Google Scholar 

  33. Chinnusamy, S., Ramasamy, V., Venkatajalapathy, S., Kaliyannan, G.V., Palaniappan, S.K.: Experimental investigation on the effect of ceramic coating on the wear resistance of Al6061 substrate. J. Market. Res. 8(6), 6125–6133 (2019)

    CAS  Google Scholar 

  34. Barroso, G., Li, Q., Bordia, R.K., Motz, G.: Polymeric and ceramic silicon-based coatings—A review. J. Mater. Chem. A 7(5), 1936–1963 (2019)

    Article  CAS  Google Scholar 

  35. Sun, J., Duan, J., Liu, X., Dong, X., Zhang, Y., Liu, C., Hou, B.: Environmentally benign smart self-healing silicone-based coating with dual antifouling and anti-corrosion properties. Appl. Mater. Today 28, 101551 (2022)

    Article  Google Scholar 

  36. Noreen, A., Zia, K.M., Zuber, M., Tabasum, S., Zahoor, A.F.: Bio-based polyurethane: an efficient and environment friendly coating systems: a review. Prog. Org. Coat. 91, 25–32 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Chancellor, President, Vice Presidents, and Vice Chancellor of Sathyabama Institute of Science and Technology, Chennai-600119 for providing the necessary facilities to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Krishnamoorthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dharini, T., Krishnamoorthy, A., Kuppusami, P. (2024). Silicone-Based Coatings for High-Temperature Applications. In: Pakseresht, A., Amirtharaj Mosas, K.K. (eds) Coatings for High-Temperature Environments. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45534-6_14

Download citation

Publish with us

Policies and ethics

Navigation