Metal Carbonate Reinforced PVC Composites and Nanocomposites

  • Chapter
  • First Online:
Poly(Vinyl Chloride) Based Composites and Nanocomposites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 167 Accesses

Abstract

At first glance, this chapter considers the effects of nano and micro-sized metal carbonate reinforced Polyvinyl chloride (PVC) composites. Initially, this chapter discusses the typical manufacturing processes of metal carbonate/PVC composites; then, the effect of micro and nano-sized metal carbonate was investigated on the mechanical and rheological properties of composites. After that, surface modification and its applications to fire retardancy were considered. Finally, the influence of weathering on composites is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Esfarjani, P.M., Fashandi, H., Karevan, M., Moheb, A.: Tuning poly (vinyl chloride) membrane morphology to suit vacuum membrane distillation: Focusing on membrane preparation process based on phase separation. Colloids Surfaces A Physicochem Eng Asp. 630, 127610 (2021)

    Article  CAS  Google Scholar 

  2. Gilbert M.: Poly (vinyl chloride)(PVC)-based nanocomposites. In: Advances in Polymer Nanocomposites, pp. 216–37. Elsevier, (2012)

    Google Scholar 

  3. Madaleno, L., Schjødt-Thomsen, J., Pinto, J.C.: Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending+ melt compounding. Compos. Sci. Technol. 70(5), 804–814 (2010)

    Article  CAS  Google Scholar 

  4. Yang, D.-Y., Liu, Q.-X., **e, X.-L., Zeng, F.-D.: Structure and thermal properties of exfoliated PVC/layered silicate nanocomposites via in situ polymerization. J. Therm. Anal. Calorim. 84(2), 355–359 (2006)

    Article  CAS  Google Scholar 

  5. Obłój-Muzaj, M., Zielecka, M., Kozakiewicz, J., Abramowicz, A., Szulc, A., Domanowski, W.: Polymerization of vinyl chloride in the presence of nanofillers--effects on the shape and morphology of PVC grains. Polimery.51(2), (2006)

    Google Scholar 

  6. Paszkiewicz, S., Szymczyk, A.: Chapter 6 - graphene-based nanomaterials and their polymer nanocomposites. In: Karak, NBT-N., and PN, (eds.) pp. 177–216. Elsevier, (2019) Available from: https://www.sciencedirect.com/science/article/pii/B9780128146156000060

  7. Vasudeo Rane, A., Kanny, K., Abitha, V.K., Patil, S.S., Thomas, S.: Chapter 4 - clay–polymer composites: design of clay polymer nanocomposite by mixing. In: Jlassi, K., Chehimi, M.M., Thomas, SBT-C-PN, (eds.) pp. 113–44. Elsevier (2017) Available from: https://www.sciencedirect.com/science/article/pii/B9780323461535000045

  8. Rane, A.V., Kanny, K., Abitha, V.K., Thomas, S.: Chapter 5 - methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Mohan Bhagyaraj, S., Oluwafemi, O.S., Kalarikkal, N., Thomas, SBT-S of IN, (eds.) Micro and Nano Technologies [Internet]. pp. 121–39. Woodhead Publishing, (2018) Available from: https://www.sciencedirect.com/science/article/pii/B9780081019757000051

  9. Deshmukh, K., Basheer Ahamed, M., Deshmukh, R.R., Khadheer Pasha, S.K., Bhagat, P.R., Chidambaram, K.: 3 - Biopolymer composites with high dielectric performance: interface engineering. In: Sadasivuni, K.K., Ponnamma, D., Kim, J., Cabibihan, J.-J., AlMaadeed, MABT-BC in E, (eds.) pp. 27–128. Elsevier, (2017) Available from: https://www.sciencedirect.com/science/article/pii/B9780128092613000036

  10. Guermazi, N., Haddar, N., Elleuch, K., Ayedi, H.F.: Effect of filler addition and weathering conditions on the performance of PVC/CaCO3 composites. Polym. Compos. 37(7), 2171–2183 (2016)

    Article  CAS  Google Scholar 

  11. Kemal, I., Whittle, A., Burford, R., Vodenitcharova, T., Hoffman, M.: Toughening of unmodified polyvinylchloride through the addition of nanoparticulate calcium carbonate. Polymer (Guildf). 50(16), 4066–4079 (2009)

    Article  CAS  Google Scholar 

  12. Zhang, L., Luo, M., Sun, S., Ma, J., Li, C.: Effect of surface structure of nano-CaCO3 particles on mechanical and rheological properties of PVC composites. J Macromol Sci Part B. 49(5), 970–982 (2010)

    Article  CAS  Google Scholar 

  13. Etienne, S., Becker, C., Ruch, D., Germain, A., Calberg, C.: Synergetic effect of poly (vinyl butyral) and calcium carbonate on thermal stability of poly (vinyl chloride) nanocomposites investigated by TG–FTIR–MS. J. Therm. Anal. Calorim. 100(2), 667–677 (2010)

    Article  CAS  Google Scholar 

  14. Ahamad, A., Patil, C.B., Gite, V.V., Hundiwale, D.G.: Evaluation of the synergistic effect of layered double hydroxides with micro-and nano-CaCO3 on the thermal stability of polyvinyl chloride composites. J. Thermoplast. Compos. Mater. 26(9), 1249–1259 (2013)

    Article  CAS  Google Scholar 

  15. Liu, P., Zhao, M., Guo, J.: Thermal stabilities of poly (vinyl chloride)/calcium carbonate (PVC/CaCO3) composites. J. Macromol. Sci. Part B Phys. 45(6), 1135–1140 (2006)

    Article  CAS  Google Scholar 

  16. Tuen, B.S., Hassan, A., Abu, B.A.: Thermal properties and processability of talc-and calcium carbonate-filled poly (vinyl chloride) hybrid composites. J. Vinyl Addit. Technol. 18(2), 87–94 (2012)

    Article  CAS  Google Scholar 

  17. Chen, C., Teng, C., Su, S., Wu, W., Yang, C.: Effects of microscale calcium carbonate and nanoscale calcium carbonate on the fusion, thermal, and mechanical characterizations of rigid poly (vinyl chloride)/calcium carbonate composites. J Polym Sci Part B Polym Phys. 44(2), 451–460 (2006)

    Article  CAS  Google Scholar 

  18. Ari, G.A., Aydin, I.: Rheological and fusion behaviors of PVC micro-and nano-composites evaluated from torque rheometer data. J. Vinyl Addit. Technol. 16(4), 223–228 (2010)

    Article  CAS  Google Scholar 

  19. Wu, D., Wang, X., Song, Y., **, R.: Nanocomposites of poly (vinyl chloride) and nanometric calcium carbonate particles: Effects of chlorinated polyethylene on mechanical properties, morphology, and rheology. J. Appl. Polym. Sci. 92(4), 2714–2723 (2004)

    Article  CAS  Google Scholar 

  20. **e, X.-L., Liu, Q.-X., Li, R.K.-Y., Zhou, X.-P., Zhang, Q.-X., Yu, Z.-Z., et al. Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer (Guildf). 45(19), 6665–73 (2004)

    Google Scholar 

  21. Lin, Y., Chan, C.-M.: 3 - Calcium carbonate nanocomposites. In: Gao FBT-A in PN, (eds.) Woodhead Publishing Series in Composites Science and Engineering [Internet]. pp. 55–90. Woodhead Publishing, (2012) Available from: https://www.sciencedirect.com/science/article/pii/B9781845699406500032

  22. Lu, Y., Zhao, C., Khanal, S., Xu, S.: Controllable synthesis of hierarchical nanostructured anhydrous MgCO3 and its effect on mechanical and thermal properties of PVC composites. Compos. Part A Appl. Sci. Manuf. 135, 105926 (2020)

    Article  CAS  Google Scholar 

  23. Zhao, C., Lu, Y., Zhao, X., Khanal, S., Xu, S.: Synthesis of MgCO3 particles with different morphologies and their effects on the mechanical properties of rigid polyvinyl chloride composites. Polym Technol Mater. 60(3), 316–326 (2021)

    CAS  Google Scholar 

  24. Albayrak Ari, G., Aydin, I.: Nanocomposites prepared by solution blending: microstructure and mechanical properties. J. Macromol. Sci. Part B Phys. 47(2), 260–267 (2008)

    Article  Google Scholar 

  25. Tuen, B.S., Hassan, A., Abu, B.A.: Mechanical properties of talc-and (calcium carbonate)-filled poly (vinyl chloride) hybrid composites. J. Vinyl Addit. Technol. 18(2), 76–86 (2012)

    Article  CAS  Google Scholar 

  26. Sun, S., Li, C., Zhang, L., Du, H.L., Burnell-Gray, J.S.: Interfacial structures and mechanical properties of PVC composites reinforced by CaCO3 with different particle sizes and surface treatments. Polym. Int. 55(2), 158–164 (2006)

    Article  CAS  Google Scholar 

  27. Fernando, N.A.S., Thomas, N.L.: Investigation of precipitated calcium carbonate as a processing aid and impact modifier in poly (vinyl chloride). Polym. Eng. Sci. 52(11), 2369–2374 (2012)

    Article  CAS  Google Scholar 

  28. Rothon, R.: Fillers for polymer applications. Vol. 489. Springer Berlin, Germany, (2017)

    Google Scholar 

  29. Jiang, Z., Wang, J., Ge, R., Wu, C.: The effects of surface modification of ground calcium carbonate powdery fillers on the properties of PVC. Polym. Bull. 75(3), 1123–1139 (2018)

    Article  CAS  Google Scholar 

  30. Jazi, S.H.S., Bagheri, R., Esfahany, M.N.: The effect of surface modification of (micro/nano)-calcium carbonate particles at various ratios on mechanical properties of poly (vinyl chloride) composites. J. Thermoplast. Compos. Mater. 28(4), 479–495 (2015)

    Article  CAS  Google Scholar 

  31. Kemal, I., Whittle, A., Burford, R., Vodenitcharova, T., Hoffman, M.: Toughening of unmodified polyvinylchloride through the addition of nanoparticulate calcium carbonate and titanate coupling agent. J. Appl. Polym. Sci. 127(3), 2339–2353 (2013)

    Article  CAS  Google Scholar 

  32. Chetanachan, W., Sutthitavil, W., Chomcheuy, W.: Effect of nanocalcium carbonate on the impact strength and accelerated weatherability of rigid poly (vinyl chloride)/acrylic impact modifier. J. Vinyl Addit. Technol. 17(2), 92–97 (2011)

    Article  CAS  Google Scholar 

  33. Xanthos, M.: Functional fillers for plastics. John Wiley & Sons, (2010)

    Google Scholar 

  34. Rothon, R.: Particulate-filled polymer composites. iSmithers Rapra Publishing, (2003)

    Google Scholar 

  35. Pan, Y., Yuan, Y., Wang, D., Yang, R.: An overview of the flame retardants for poly (vinyl chloride): recent states and perspective. Chinese J Chem. 38(12), 1870–1896 (2020)

    Article  CAS  Google Scholar 

  36. Hull, T.R., Witkowski, A., Hollingbery, L.: Fire retardant action of mineral fillers. Polym. Degrad. Stab. 96(8), 1462–1469 (2011)

    Article  CAS  Google Scholar 

  37. Xu, J., Jiao, Y., Zhang, B., Qu, H., Yang, G.: Tin dioxide coated calcium carbonate as flame retardant for semirigid poly (vinyl chloride). J. Appl. Polym. Sci. 101(1), 731–738 (2006)

    Article  CAS  Google Scholar 

  38. Jiao, Y., Xu, J.Z.: Flame-retardant properties of magnesium hydroxystannate and strontium hydroxystannate coated calcium carbonate on soft poly (vinyl chloride). J. Appl. Polym. Sci. 112(1), 36–43 (2009)

    Article  CAS  Google Scholar 

  39. Rothon, R., Hornsby, P.: Chapter 9 - fire retardant fillers for polymers. In: Papaspyrides, C.D., Kiliaris, PBT-PGFR, (eds.) pp. 289–321. Amsterdam, Elsevier (2014) Available from: https://www.sciencedirect.com/science/article/pii/B9780444538086000093

  40. Millane, J.J.: Bakelite Xylonite Limited. British Patent BP 1,213, 625 (1967)

    Google Scholar 

  41. Qu, H., Wu, W., Jiao, Y., **e, J., Xu, J.: The synergism of MgCO3 and 2ZnCO3· 3ZnO· 4H2O as flame retardants and smoke suppressants for flexible poly (vinyl chloride)(PVC). e-Polymers. 11(1), (2011)

    Google Scholar 

  42. Pan, Y.-T., Wang, D.-Y.: One-step hydrothermal synthesis of nano zinc carbonate and its use as a promising substitute for antimony trioxide in flame retardant flexible poly (vinyl chloride). Rsc Adv. 5(35), 27837–27843 (2015)

    Article  CAS  Google Scholar 

  43. Liu, F., Zhou, X., Gao, Q., Wang, X., Jiao, Y., Xu, J.: Preparation of zinc hydroxystannate coated dendritic-fibrillar barium carbonate and its flame retardant effect on soft poly (vinyl chloride). J Macromol Sci Part B. 59(11), 659–671 (2020)

    Article  CAS  Google Scholar 

  44. Zhu, S., Zhang, Y., Zhang, C.: Effect of CaCO3/LiCO3 on the HCI generation of PVC during combustion. Polym. Test. 22(5), 539–543 (2003)

    Article  CAS  Google Scholar 

  45. Liu, H., Dong, L., **e, H., Wan, L., Liu, Z., **ong, C.: Ultraviolet light aging properties of PVC/CaCO3 composites. J. Appl. Polym. Sci. 127(4), 2749–2756 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedram Mohammadi Esfarjani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammadi Esfarjani, P., Yousefi, B., Hajihashemi, N. (2024). Metal Carbonate Reinforced PVC Composites and Nanocomposites. In: H, A., Sabu, T. (eds) Poly(Vinyl Chloride) Based Composites and Nanocomposites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-45375-5_8

Download citation

Publish with us

Policies and ethics

Navigation