Deep Convolutional Neural Network for Power System N-1 Contingency Screening and Cascading Outage Screening

  • Chapter
  • First Online:
Deep Learning for Power System Applications

Part of the book series: Power Electronics and Power Systems ((PEPS))

  • 208 Accesses

Abstract

In this chapter, a data-driven method is proposed for fast N-1 contingency screening and further cascading outage screening in power systems. The proposed method is a combination of a deep convolutional neural network (CNN) and a depth-first search (DFS) algorithm. First, deep CNN is constructed as a security assessment tool to evaluate the system security status based on observable information. Second, a scenario tree is built to represent the potential operation scenarios and the associated cascading outages. The DFS algorithm is further applied to traverse the tree and to calculate the expected security index value for each cascading outage path on the tree based on the estimated security status from deep CNN. The simulation results of applying the proposed deep CNN and the DFS algorithm on standard test cases verify their accuracy and that their computational efficiency is thousands of times faster than the model-based traditional approach, which implies the great potential of the proposed algorithm for online applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Li, Y. Du, From AlphaGo to power system AI: What engineers can learn from solving the Most complex board game. IEEE Power Energy Mag. 16(2), 76–84 (2018)

    Article  Google Scholar 

  2. M. Majidi-Qadikolai, R. Baldick, Stochastic transmission capacity expansion planning with special scenario selection for integrating N-1 contingency analysis. IEEE Trans. Power Syst. 31, 4901–4912 (2016)

    Article  Google Scholar 

  3. D.A. Tejada-Arango, P. Sánchez-Martın, A. Ramos, Security constrained unit commitment using line outage distribution factors. IEEE Trans. Power Syst. 33, 329–337 (2018)

    Article  Google Scholar 

  4. Glossary of Terms Used in NERC Reliability Standards. [Online]. Available: https://www.nerc.com/files/glossary_of_terms.pdf

  5. WSCC Operations Committee, “Western Systems Coordinating Council Disturbance Report for the Power System Outages that Occurred on the Western Interconnection on July 2, 1996 and July 3, 1996,” Western Syst. Coordinating Council, Salt Lake City, UT, USA, Tech. Rep., 1996

    Google Scholar 

  6. U.S.-Canada Power System Outage Task Force, Final report on the August 14th blackout in the United States and Canada, Apr 2004

    Google Scholar 

  7. Protection System Response to Power Swings, System Protection and Control Subcommittee, NERC, Atlanta, GA, USA, Aug. 2013. [Online]. Available: http://www.nerc.com

  8. Transmission System Planning Performance Requirements, NERC Standard TPL-001-4, 2013

    Google Scholar 

  9. I. Dobson, B.A. Carreras, V.E. Lynch, D.E. Newman, Complex systems analysis of series of blackouts: Cascading failure, critical points, and self-organization. Chaos 17, 026103 (2007)

    Article  MATH  Google Scholar 

  10. S. Mei, Y. Ni, G. Wang, S. Wu, A study of self-organized criticality of power system under cascading failures based on AC-OPA with voltage stability margin. IEEE Trans. Power Syst. 23(4), 1719–1726 (2008)

    Article  Google Scholar 

  11. D.S. Kirschen, D. Jawayeera, D.P. Nedic, R.N. Allan, A probabilistic indicator of system stress. IEEE Trans. Power Syst. 19(3), 1650–1657 (2004)

    Article  Google Scholar 

  12. I. Dobson, B.A. Carreras, D.E. Newman, A loading dependent model of probabilistic cascading failure. Probab. Eng. Inf. Sci. 19(1), 15–32 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Henneaux, P.-E. Labeau, J.-C. Maun, L. Haarla, A two-level probabilistic risk assessment of cascading outages. IEEE Trans. Power Syst. 31(2), 2393–2403 (2016)

    Article  Google Scholar 

  14. R. Yao, S. Huang, K. Sun, F. Liu, X. Zhang, S. Mei, A multi-timescale quasi-dynamic model for simulation of cascading outages. IEEE Trans. Power Syst. 31(4), 3189–3201 (2016)

    Article  Google Scholar 

  15. J. Guo, F. Liu, J. Wang, J. Lin, S. Mei, Toward efficient cascading outage simulation and probability analysis in power systems. IEEE Trans. Power Syst. 33(3), 2370–2382 (2018)

    Article  Google Scholar 

  16. M. Rahnamay-Naeini, M.M. Hayat, Cascading failures in interdependent infrastructures: An interdependent Markov-chain approach. IEEE Trans. Smart Grid 7(4), 1997–2006 (2016)

    Article  Google Scholar 

  17. P. Hines, I. Dobson, P. Rezaei, Cascading power outages propagate locally in an influence graph that is not the actual grid topology. IEEE Trans. Power Syst. 32(2), 958–967 (2017)

    Google Scholar 

  18. J. Qi, W. Ju, K. Sun, Estimating the propagation of interdependent cascading outages with multi-type branching processes. IEEE Trans. Power Syst. 32(2), 1212–1223 (2016)

    Google Scholar 

  19. J. Qi, J. Wang, K. Sun, Efficient estimation of component interactions for cascading failure analysis by EM algorithm. IEEE Trans. Power Syst. 33(3), 3153–3161 (2018)

    Article  Google Scholar 

  20. R. Yao, S. Huang, K. Sun, F. Liu, X. Zhang, S. Mei, W. Wei, L. Ding, Risk assessment of multi-timescale cascading outages based on Markovian tree search. IEEE Trans. Power Syst. 32(4), 2887–2900 (2017)

    Article  Google Scholar 

  21. R. Yao, K. Sun, Toward simulation and risk assessment of weather-related outages. IEEE Trans. Smart Grid 10(4), 4391–4400 (2019)

    Article  Google Scholar 

  22. J. Guo, F. Liu, J. Wang, M. Cao, S. Mei, Quantifying the influence of component failure probability on cascading blackout risk. IEEE Trans. Power Syst. 33(5), 5671–5681 (2018)

    Article  Google Scholar 

  23. X. Liu, Z. Li, Revealing the impact of multiple solutions in DCOPF on the risk assessment of line cascading failure in OPA model. IEEE Trans. Power Syst. 31(5), 4159–4160 (2016)

    Article  Google Scholar 

  24. Z. Ma, C. Shen, F. Liu, S. Mei, Fast screening of vulnerable transmission lines in power grids: A PageRank-based approach. IEEE Trans. Smart Grid 10(2), 1982–1991 (2019)

    Article  Google Scholar 

  25. X. Wei, J. Zhao, T. Huang, E. Bompard, A novel cascading faults graph based transmission network vulnerability assessment method. IEEE Trans. Power Syst. 33(3), 2995–3000 (2018)

    Article  Google Scholar 

  26. E.J. Anderson, J. Linderoth, High throughput computing for massive scenario analysis and optimization to minimize cascading blackout risk. IEEE Trans. Smart Grid 8(3), 1427–1435 (2017)

    Article  Google Scholar 

  27. A.A. Babalola, R. Belkacemi, S. Zarrabian, Real-time cascading failures prevention for multiple contingencies in smart grids through a multi-agent system. IEEE Trans. Smart Grid 9(1), 373–385 (2018)

    Article  Google Scholar 

  28. R. Yao, K. Sun, F. Liu, S. Mei, Management of Cascading Outage Risk Based on risk gradient and Markovian tree search. IEEE Trans. Power Syst. 33(4), 4050–4060 (2018)

    Article  Google Scholar 

  29. R. Sunitha, S.K. Kumar, A.T. Mathew, Online static security assessment module using artificial neural networks. IEEE Trans. Power Syst. 28(4), 4328–4335 (2013)

    Article  Google Scholar 

  30. A. Gupta, G. Gurrala, An online power system stability monitoring system using convolutional neural networks. IEEE Trans. Power Syst 34(2), 864–872 (2019)

    Article  Google Scholar 

  31. M. Sun, I. Konstantelos, G. Strbac, A deep learning-based feature extraction framework for system security assessment. IEEE Trans. Smart Grid 10(5), 5007–5020 (2019)

    Article  Google Scholar 

  32. M.R. Salimian, M.R. Aghamohammadi, A three stages decision tree-based intelligent blackout predictor for power systems using brittleness indices. IEEE Trans. Smart Grid 9(5), 5123–5131 (2018)

    Article  Google Scholar 

  33. Y. Jia, Z. Xu, L.L. Lai, K.P. Wong, Risk-based power system security analysis considering cascading outages. IEEE Trans. Ind. Inform 12(2), 872–882 (2016)

    Article  Google Scholar 

  34. K. Nara, K. Tanaka, H. Kodama, etc, On-line contingency selection algorithm for voltage security analysis. IEEE Trans. Power Appar. Syst. PAS-104(4), 846–856 (1985)

    Article  Google Scholar 

  35. R. Sunitha, R. Sreerama Kumar, A.T. Mathew, A composite security index for on-line static security evaluation. Elect. Power Compon. Syst. 39(1), 1–14 (2011)

    Article  Google Scholar 

  36. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT press, Cambridge, 2016)

    MATH  Google Scholar 

  37. R.D. Zimmerman, C.E. Murillo-Sánchez, R.J. Thomas, MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, F., Du, Y. (2024). Deep Convolutional Neural Network for Power System N-1 Contingency Screening and Cascading Outage Screening. In: Deep Learning for Power System Applications. Power Electronics and Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-45357-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45357-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45356-4

  • Online ISBN: 978-3-031-45357-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation