Deep Neural Network for Microgrid Management

  • Chapter
  • First Online:
Deep Learning for Power System Applications

Part of the book series: Power Electronics and Power Systems ((PEPS))

  • 214 Accesses

Abstract

In this chapter, an intelligent multi-microgrid (MMG) energy management method will be proposed based on deep neural network (DNN) and model-free reinforcement learning (RL) techniques. In the studied problem, multiple microgrids are connected to a main distribution system, and they purchase power from the distribution system to maintain local consumption. From the perspective of the distribution system operator (DSO), the target is to decrease the demand-side peak-to-average ratio (PAR) and to maximize the profit from selling energy. To protect user privacy, DSO learns the MMG response by implementing a DNN without direct access to the user’s information. Further, the DSO selects its retail pricing strategy via a Monte Carlo method from RL, which optimizes the decision based on prediction. The simulation results from the proposed data-driven deep learning method, as well as comparisons with conventional model-based methods, substantiate the effectiveness of the proposed approach in solving power system problems with partial or uncertain information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 117.69
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Du, F. Li, J. Li, T. Zheng, Achieving 100x acceleration for N-1 contingency screening with uncertain scenarios using deep convolutional neural network. IEEE Trans. Power Syst. 34, 3303–3305 (2019)

    Article  Google Scholar 

  2. X. Fang, Q. Hu, F. Li, B. Wang, Y. Li, Coupon-based demand response considering wind power uncertainty: A strategic bidding model for load serving entities. IEEE Trans. Power Syst. 31, 1025–1037 (2015)

    Article  Google Scholar 

  3. Y. Du, F. Li, A hierarchical real-time balancing market considering multi-microgrids with distributed sustainable resources. IEEE Trans. Sustainable Energy, 2018, early access

    Google Scholar 

  4. J.P. Catalão, P. Siano, F. Li, M.A. Masoum, J. Aghaei, Guest editorial special section on industrial and commercial demand response. IEEE Trans. Industr. Inform. 14, 5017–5019 (2018)

    Article  Google Scholar 

  5. H. Shin, R. Baldick, Plug-in electric vehicle to home (V2H) operation under a grid outage. IEEE Trans. Smart Grid 8, 2032–2041 (2017)

    Article  Google Scholar 

  6. A.-H. Mohsenian-Rad, V.W. Wong, J. Jatskevich, R. Schober, A. Leon-Garcia, Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid. IEEE Trans. Smart Grid 1, 320–331 (2010)

    Article  Google Scholar 

  7. R. Deng, Z. Yang, J. Chen, N.R. Asr, M.-Y. Chow, Residential energy consumption scheduling: A coupled-constraint game approach. IEEE Trans. Smart Grid 5, 1340–1350 (2014)

    Article  Google Scholar 

  8. H.M. Soliman, A. Leon-Garcia, Game-theoretic demand-side management with storage devices for the future smart grid. IEEE Trans. Smart Grid 5, 1475–1485 (May 2014)

    Article  Google Scholar 

  9. P. Samadi, H. Mohsenian-Rad, V.W.S. Wong, R. Schober, Real-time pricing for demand response based on stochastic approximation. IEEE Trans. Smart Grid 5, 789–798 (2014)

    Article  Google Scholar 

  10. C. Li, X. Yu, W. Yu, G. Chen, J. Wang, Efficient computation for sparse load shifting in demand side management. IEEE Trans. Smart Grid 8, 250–261 (2017)

    Article  Google Scholar 

  11. S. Bahrami, V.W.S. Wong, J. Huang, An online learning algorithm for demand response in smart grid. IEEE Trans. Smart Grid 9, 4712–4725 (2018)

    Article  Google Scholar 

  12. L. Wang, Z. Zhang, J. Chen, Short-term electricity price forecasting with stacked denoising autoencoders. IEEE Trans. Power Syst. 32, 2673–2681 (2017)

    Article  Google Scholar 

  13. W. Kong, Z.Y. Dong, D.J. Hill, F. Luo, Y. Xu, Short-term residential load forecasting based on resident behaviour learning. IEEE Trans. Power Syst. 3, 1087–1088 (2018)

    Article  Google Scholar 

  14. J. Yan, H. Zhang, Y. Liu, S. Han, L. Li, Z. Lu, Forecasting the high penetration of wind power on multiple scales using multi-to-multi map**. IEEE Trans. Power Syst. 33, 3276–3284 (2018)

    Article  Google Scholar 

  15. Y. Wang, Q. Chen, D. Gan, J. Yang, D.S. Kirschen, C. Kang, Deep learning-based socio-demographic Information Identification from Smart Meter Data. IEEE Trans. Smart Grid, early access

    Google Scholar 

  16. Y. Chen, Y. Wang, D. Kirschen, B. Zhang, Model-free renewable scenario generation using generative adversarial networks. IEEE Trans. Power Syst. 33, 3265–3275 (2018)

    Article  Google Scholar 

  17. P. Zeng, H. Li, H. He, S. Li, Dynamic energy management of a microgrid using approximate dynamic programming and deep recurrent neural network learning. IEEE Trans. Smart Grid, early access

    Google Scholar 

  18. D. O’Neill, M. Levorato, A. Goldsmith, U. Mitra, Residential demand response using reinforcement learning, in 2010 First IEEE International Conference on Smart Grid Communications, (2010), pp. 409–414

    Chapter  Google Scholar 

  19. Z. Wen, D. O’Neill, H. Maei, Optimal demand response using device-based reinforcement learning. IEEE Trans. Smart Grid 6, 2312–2324 (2015)

    Article  Google Scholar 

  20. A. Sheikhi, M. Rayati, A.M. Ranjbar, Dynamic load management for a residential customer; reinforcement learning approach. Sustain. Cities Soc. 24, 42–51 (2016)

    Article  Google Scholar 

  21. B.J. Claessens, P. Vrancx, F. Ruelens, Convolutional neural networks for automatic state-time feature extraction in reinforcement learning applied to residential load control. IEEE Trans. Smart Grid 9, 3259–3269 (2018)

    Article  Google Scholar 

  22. E. Mocanu, D.C. Mocanu, P.H. Nguyen, A. Liotta, M.E. Webber, M. Gibescu, J.G. Slootweg, On-line building energy optimization using deep reinforcement learning. IEEE Trans. Smart Grid,. early access

    Google Scholar 

  23. Z. Wan, H. Li, H. He, D. Prokhorov, Model-free real-time EV charging scheduling based on deep reinforcement learning. IEEE Trans. Smart Grid, early access

    Google Scholar 

  24. Z. Yan, Y. Xu, Data-driven load frequency control for stochastic power systems: A deep reinforcement learning method with continuous action search. IEEE Trans. Power Syst., early access

    Google Scholar 

  25. F. Li, Y. Du, From AlphaGo to power system AI: What engineers can learn from solving the most complex board game. IEEE Power Energy Mag. 16, 76–84 (2018)

    Article  Google Scholar 

  26. M. Parvania, M. Fotuhi-Firuzabad, Demand response scheduling by stochastic SCUC. IEEE Trans. Smart Grid 1, 89–98 (2010)

    Article  Google Scholar 

  27. W. Liu, P. Zhuang, H. Liang, J. Peng, Z. Huang, Distributed economic dispatch in microgrids based on cooperative reinforcement learning. IEEE Trans. Neur. Net Learn. Syst. 29, 2192–2203 (2018)

    Article  MathSciNet  Google Scholar 

  28. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT press, Cambridge, 2016), pp. 152–231

    MATH  Google Scholar 

  29. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT press, Cambridge, 2018)

    MATH  Google Scholar 

  30. H. Yuan, F. Li, Y. Wei, J. Zhu, Novel linearized power flow and linearized OPF models for active distribution networks with application in distribution LMP. IEEE Trans. Smart Grid 9, 438–448 (2018)

    Article  Google Scholar 

  31. D.P. Kingma, J. Ba, Adam: A method for stochastic optimization. ar**v:1412.6980 (2014)

    Google Scholar 

  32. X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, (2010)

    Google Scholar 

  33. S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift. ar**v preprint, ar**v:1502.03167, 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, F., Du, Y. (2024). Deep Neural Network for Microgrid Management. In: Deep Learning for Power System Applications. Power Electronics and Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-45357-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45357-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45356-4

  • Online ISBN: 978-3-031-45357-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation