A Damage Evolution Method for Estimating Low Cycle Fatigue Life of GH4169 Alloy Based on Thermodynamic Entropy Generation at Elevated Temperature

  • Conference paper
  • First Online:
Computational and Experimental Simulations in Engineering (ICCES 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 146))

  • 384 Accesses

Abstract

Hot-section components made by nickel-based superalloy for areo-engines always experience a long-term elevated temperature operating environment. Mechanical load caused more serious low cycle fatigue (LCF) at elevated temperature due to the reduction of mechanical properties. It is essential to investigate LCF under elevated temperature, especially LCF behavior and fatigue life. This paper considered the isothermal LCF for disc superalloy GH4169 at elevated temperature from the perspective of irreversible thermodynamics and degradation. A strain-controlled LCF behavior simulation program coded in MATLAB program based on Chaboche plastic constitutive model to simulate cyclic stress–strain responses and entropy generation. According to the results of accumulation of entropy generation in LCF process, a proposed model utilizing Belehradek law to fit fatigue fracture entropy generation under different loading conditions. A defined damage factor based on degradation-theorem and entropy generation was proposed to describe the evolution of fatigue damage in LCF. A damage evolution method utilized the entropy generation are adopted to estimate fatigue life. Compared with the experiment lives and predicted results from classic life prediction model, such as Ostergren and SWT models, this method can estimate the fatigue life for LCF at elevated temperature reasonably. Finally, the damage evolution method provided a suitable approach to monitor remaining life for elevated temperature LCF for GH4169.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, G., Zhang, Y., Xu, D.K., et al.: Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C. Mater. Sci. Eng. A 655, 175–182 (2016)

    Article  Google Scholar 

  2. Cheng, L., Xue, X., Tang, B., et al.: Deformation behavior of hot-rolled IN718 superalloy under plane strain compression at elevated temperature. Mater. Sci. Eng. A 606, 24–30 (2014)

    Article  Google Scholar 

  3. Yan, P., Feng, Y.N., Qiao, S., Zhang, Y., Liu, Q., Shao, X.: Research progress on low cycle fatigue of nickel-based wrought superalloys. Chin. J. Rare Metals 45(6), 740 (2021)

    Google Scholar 

  4. Fournier, D., Pineau, A.: Low cycle fatigue behavior of Inconel 718 at 298 K and 823 K. Metall. Trans. A 8, 1095–1105 (1997)

    Article  Google Scholar 

  5. Prasad, K., Sarkar, R., Ghosal, P., et al.: High temperature low cycle fatigue deformation behaviour of forged IN718 superalloy turbine disc. Mater. Sci. Eng. A 568, 239–245 (2013)

    Article  Google Scholar 

  6. Zhang, X.C., Li, H.C., Zeng, X., et al.: Fatigue behavior and bilinear Coffin–Manson plots of Ni-based GH4169 alloy with different volume fractions of δ phase. Mater. Sci. Eng. A 682, 12–22 (2017)

    Article  Google Scholar 

  7. Wang, L., Liu, Y.M., Chen, G., Liu, J.: Low cycle fatigue damage mechanism of GH4169 nickel-based superalloy at elevated temperature. Mater. Mech. Eng. 43(1), 45 (2019)

    Google Scholar 

  8. Yao, L.L., Zhang, X.C., Liu, F., Tu, S.D., Ma, C.: High-temperature low-cycle fatigue properties of GH4169 Ni-based superalloy. Mater. Mech. Eng. 40(4), 25 (2016)

    Google Scholar 

  9. Coffin, L.F., Tavemelli, J.F.: The cyclic straining and fatigue of metals. Trans. Metall. Soc. AIME 215, 794 (1959)

    Google Scholar 

  10. Li, Z., Li, S., Xu, G., et al.: The framework of hot corrosion fatigue life estimation of a PM superalloy using notch fatigue methodology combined with pit evolution. Int. J. Fatigue 153, 106483 (2021)

    Article  Google Scholar 

  11. Smith, K.N.: A stress–strain function for the fatigue of metals. J. Mater. 5, 767–778 (1970)

    Google Scholar 

  12. Liu, L.L., Hu, D.Y., Li, D., et al.: Effect of grain size on low cycle fatigue life in compressor disc superalloy GH4169 at 600 °C. Procedia Struct. Integrity 7, 174–181 (2017)

    Article  Google Scholar 

  13. Ostergren, W.J.: A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature, low cycle fatigue. J. Test. Eval. 4(5), 327–339 (1976)

    Article  Google Scholar 

  14. Miner, M.A.: Cumulative damage in fatigue. ASME J. Appl. Mech. 12(3), A159–A164 (1945)

    Article  Google Scholar 

  15. Chaboche, J.L., Lesne, P.M.A.: A non-linear continuous fatigue damage model. Fatigue Fract. Eng. Mater. Struct. 11(1), 1–17 (1988)

    Article  Google Scholar 

  16. Duyi, Y., Zhenlin, W.: A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy during fatigue. Int. J. Fatigue 23(8), 679–687 (2001)

    Article  Google Scholar 

  17. Liu, Y., Mahadevan, S.: Stochastic fatigue damage modeling under variable amplitude loading. Int. J. Fatigue 29(6), 1149–1161 (2007)

    Article  Google Scholar 

  18. Krajcinovic, D., Lemaitre, J.: Continuum Damage Mechanics: Theory and Applications. Springer-Verlag, Berlin (1987)

    Book  Google Scholar 

  19. Bhattacharya, B., Ellingwood, B.: Continuum damage mechanics analysis of fatigue crack initiation. Int. J. Fatigue 20(9), 631–639 (1998)

    Article  Google Scholar 

  20. Naderi, M., Amiri, M., Khonsari, M.M.: On the thermodynamic entropy of fatigue fracture. Proc. R. Soc. A Math. Phys. Eng. Sci. 466(2114), 423–438 (2010)

    Google Scholar 

  21. Basaran, C., Nie, S.: An irreversible thermodynamics theory for damage mechanics of solids. Int. J. Damage Mech. 13(3), 205–223 (2004)

    Article  Google Scholar 

  22. Basaran, C., Yan, C.Y.: A thermodynamic framework for damage mechanics of solder joints. ASME J. Electron. Packag. 120(4), 379–384 (1988)

    Article  Google Scholar 

  23. Doelling, K.L., Ling, F.F., Bryant, M.D., et al.: An experimental study of the correlation between wear and entropy flow in machinery components. J. Appl. Phys. 88(5), 2999–3003 (2000)

    Article  Google Scholar 

  24. Naderi, M., Khonsari, M.M.: A thermodynamic approach to fatigue damage accumulation under variable loading. Mater. Sci. Eng. A 527(23), 6133–6139 (2010)

    Article  Google Scholar 

  25. Bryant, M.D., Khonsari, M.M., Ling, F.F.: On the thermodynamics of degradation. Proc. R. Soc. A Math. Phys. Eng. Sci. 464(2096), 2001–2014 (2008)

    Google Scholar 

  26. Liakat, M., Khonsari, M.M.: Entropic characterization of metal fatigue with stress concentration. Int. J. Fatigue 70, 223–234 (2015)

    Article  Google Scholar 

  27. Chaboche, J.L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 5(3), 247–302 (1989)

    Article  Google Scholar 

  28. Liu, L.F.: Research on thermomechanical fatigue behavior and life prediction approaches of nickel-based superalloy. M.S. thesis, Nan**g University of Aeronautics and Astronautics, Nan**g (2019)

    Google Scholar 

  29. Sun, J., Yuan, H.: Cyclic plasticity modeling of nickel-based superalloy Inconel 718 under multi-axial thermo-mechanical fatigue loading conditions. Int. J. Fatigue 119, 89–101 (2019)

    Article  Google Scholar 

  30. Wang, R.Z., Wang, J., Gong, J.G.: Creep-fatigue behaviors and life assessments in two nickel-based superalloys. J. Press. Vessel Technol. 140(3) (2018)

    Google Scholar 

  31. Wei, D.S., Shi, L., Wang, Y.R.: Experimental study of the cyclic mechanical behaviour of two Ni-based superalloys at evaluated temperature. Mater. Sci. Eng. A 569, 124–131 (2013)

    Article  Google Scholar 

  32. Cheng, L.Y., Wang, R.Z., Wang, J.: Cycle-dependent creep-fatigue deformation and life predictions in a nickel-based superalloy at elevated temperature. Int. J. Mech. Sci. 206, 106628 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

**a, S., Ding, S., Li, Z., Zuo, L., Bao, S., Li, G. (2024). A Damage Evolution Method for Estimating Low Cycle Fatigue Life of GH4169 Alloy Based on Thermodynamic Entropy Generation at Elevated Temperature. In: Li, S. (eds) Computational and Experimental Simulations in Engineering. ICCES 2023. Mechanisms and Machine Science, vol 146. Springer, Cham. https://doi.org/10.1007/978-3-031-44947-5_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44947-5_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44946-8

  • Online ISBN: 978-3-031-44947-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation