Revisiting the Minimum Constraint Removal Problem in Mobile Robotics

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 18 (IAS 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 795))

Included in the following conference series:

  • 68 Accesses

Abstract

The minimum constraint removal problem seeks to find the minimum number of constraints, i.e., obstacles, that need to be removed to connect a start to a goal location with a collision-free path. This problem is NP-hard and has been studied in robotics, wireless sensing, and computational geometry. This work contributes to the existing literature by presenting and discussing two results. The first result shows that the minimum constraint removal is NP-hard for simply connected obstacles where each obstacle intersects a constant number of other obstacles. The second result demonstrates that for n simply connected obstacles in the plane, instances of the minimum constraint removal problem with minimum removable obstacles lower than \((n+1)/3\) can be solved in polynomial time. This result is also empirically validated using several instances of randomly sampled axis-parallel rectangles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MCR with disjoint and simply connected obstacles is in P [14].

  2. 2.

    In the following, we will omit the subscript P because the reference to a specific path P will be implicit.

  3. 3.

    Exact MCR using best-first search for non-overlap** and simply connected obstacles could still generate \(O(|E|2^n)\) states. However, for such sub-classes, a greedy search (running in O(|E|n)) generates an optimal solution [14].

References

  1. Alt, H., Cabello, S., Giannopoulos, P., Knauer, C.: On some connection problems in straight-line segment arrangements. In: 27th EuroCG, pp. 27–30 (2011)

    Google Scholar 

  2. Bandyapadhyay, S., Kumar, N., Suri, S., Varadarajan, K.: Improved approximation bounds for the minimum constraint removal problem. Comput. Geom. 90, 101650 (2020)

    MathSciNet  Google Scholar 

  3. Basch, J., Guibas, L.J., Hsu, D., Nguyen, A.T.: Disconnection proofs for motion planning. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), vol. 2, pp. 1765–1772. IEEE (2001)

    Google Scholar 

  4. Bereg, S., Kirkpatrick, D.: Approximating barrier resilience in wireless sensor networks. In: Algorithmic Aspects of Wireless Sensor Networks: 5th International Workshop, ALGOSENSORS 2009, Rhodes, Greece, July 10–11, 2009. Revised Selected Papers 5, pp. 29–40. Springer, Berlin (2009)

    Google Scholar 

  5. Chan, D.Y.C., Kirkpatrick, D.: Multi-path algorithms for minimum-colour path problems with applications to approximating barrier resilience. Theor. Comput. Sci. 553, 74–90 (2014)

    MathSciNet  Google Scholar 

  6. Dantam, N.T., Kingston, Z.K., Chaudhuri, S., Kavraki, L.E.: Incremental task and motion planning: a constraint-based approach. In: Proceedings of Robotics: Science and Systems XII, AnnArbor, Michigan (2016)

    Google Scholar 

  7. Dogar, M., Srinivasa, S.: A framework for push-gras** in clutter. In: Hugh Durrant-Whyte, N.R., Abbeel, P. (eds.) Proceedings of Robotics: Science and Systems VII. MIT Press, Los Angeles, CA, USA (2011)

    Google Scholar 

  8. Eiben, E., Gemmell, J., Kanj, I., Youngdahl, A.: Improved results for minimum constraint removal. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  9. Eiben, E., Kanj, I.: How to navigate through obstacles? In: 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 107, pp. 48:1–48:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018). http://drops.dagstuhl.de/opus/volltexte/2018/9052

  10. Erickson, L.H., LaValle, S.M.: A simple, but np-hard, motion planning problem. In: Twenty-Seventh AAAI Conference on Artificial Intelligence (2013)

    Google Scholar 

  11. Garrett, C.R., Lozano-Perez, T., Kaelbling, L.P.: FFRob: leveraging symbolic planning for efficient task and motion planning. Int. J. Robot. Res. 37(1), 104–136 (2018)

    Google Scholar 

  12. Gorbenko, A., Popov, V.: The discrete minimum constraint removal motion planning problem. In: Proceedings of the American Institute of Physics, vol. 1648, p. 850043. AIP Publishing LLC (2015)

    Google Scholar 

  13. Hauser, K.: Minimum constraint displacement motion planning. In: Proceedings of Robotics: Science and Systems IX, Berlin, Germany (2013)

    Google Scholar 

  14. Hauser, K.: The minimum constraint removal problem with three robotics applications. Int. J. Robot. Res. 33(1), 5–17 (2014)

    Google Scholar 

  15. Kaelbling, L.P., Lozano-Pérez, T.: Integrated task and motion planning in belief space. Int. J. Robot. Res. 32(9–10), 1194–1227 (2013)

    Google Scholar 

  16. Karami, H., Thomas, A., Mastrogiovanni, F.: Task allocation for multi-robot task and motion planning: a case for object picking in cluttered workspaces. In: AIxIA 2021—Advances in Artificial Intelligence, pp. 3–17. Springer International Publishing, Cham (2022)

    Google Scholar 

  17. Korman, M., Löffler, M., Silveira, R.I., Strash, D.: On the complexity of barrier resilience for fat regions and bounded ply. Comput. Geom. 72, 34–51 (2018)

    MathSciNet  Google Scholar 

  18. Krontiris, A., Bekris, K.E.: Dealing with difficult instances of object rearrangement. In: Proceedings of Robotics: Science and Systems XI, Rome, Italy (2015)

    Google Scholar 

  19. Krontiris, A., Bekris, K.E.: Trade-off in the computation of minimum constraint removal paths for manipulation planning. Adv. Robot. 31(23–24), 1313–1324 (2017)

    Google Scholar 

  20. Kumar, N.: Computing a minimum color path in edge-colored graphs. In: Analysis of Experimental Algorithms: Special Event, SEA\(^2\) 2019, Kalamata, Greece, June 24–29, 2019, Revised Selected Papers, pp. 35–50. Springer, Berlin (2019)

    Google Scholar 

  21. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Proceedings of the 11th Annual International Conference on Mobile Computing and Networking, pp. 284–298 (2005)

    Google Scholar 

  22. Li, S., Dantam, N.T.: Learning proofs of motion planning infeasibility. In: Robotics: Science and Systems (2021)

    Google Scholar 

  23. Nieuwenhuisen, D., van der Stappen, A.F., Overmars, M.H.: An effective framework for path planning amidst movable obstacles. In: Algorithmic Foundation of Robotics VII, pp. 87–102. Springer, Berlin (2008)

    Google Scholar 

  24. Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., Abbeel, P.: Combined task and motion planning through an extensible planner-independent interface layer. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 639–646. IEEE (2014)

    Google Scholar 

  25. Stilman, M., Kuffner, J.J.: Navigation among movable obstacles: real-time reasoning in complex environments. Int. J. Humanoid Robot. 2(04), 479–503 (2005)

    Google Scholar 

  26. Stilman, M., Schamburek, J.U., Kuffner, J., Asfour, T.: Manipulation planning among movable obstacles. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 3327–3332. IEEE (2007)

    Google Scholar 

  27. Thomas, A., Ferro, G., Mastrogiovanni, F., Robba, M.: Computational tradeoff in minimum obstacle displacement planning for robot navigation. In: IEEE International Conference on Robotics and Automation (ICRA) (2023)

    Google Scholar 

  28. Thomas, A., Mastrogiovanni, F.: Minimum displacement motion planning for movable obstacles. In: Intelligent Autonomous Systems, vol. 17, pp. 155–166. Springer Nature, Switzerland, Cham (2023)

    Google Scholar 

  29. Thomas, A., Mastrogiovanni, F., Baglietto, M.: MPTP: motion-planning-aware task planning for navigation in belief space. Robot. Auton. Syst. 141, 103786 (2021). https://www.sciencedirect.com/science/article/pii/S0921889021000713

  30. Van Den Berg, J., Stilman, M., Kuffner, J., Lin, M., Manocha, D.: Path planning among movable obstacles: a probabilistically complete approach. In: Workshop on the Algorithmic Foundations of Robotics VIII, WAFR, Guanajuato, Mexico, pp. 599–614. Springer, Berlin (2009)

    Google Scholar 

  31. Yang, S.: Some path planning algorithms in computational geometry and air traffic management. Ph.D. thesis, State University of New York at Stony Brook (2012)

    Google Scholar 

  32. Yuan, S., Varma, S., Jue, J.P.: Minimum-color path problems for reliability in mesh networks. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 4, pp. 2658–2669. IEEE (2005)

    Google Scholar 

  33. Zhang, L., Kim, Y.J., Manocha, D.: A simple path non-existence algorithm using c-obstacle query. In: Algorithmic Foundation of Robotics VII, pp. 269–284. Springer, Berlin (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomas, A., Mastrogiovanni, F., Baglietto, M. (2024). Revisiting the Minimum Constraint Removal Problem in Mobile Robotics. In: Lee, SG., An, J., Chong, N.Y., Strand, M., Kim, J.H. (eds) Intelligent Autonomous Systems 18. IAS 2023. Lecture Notes in Networks and Systems, vol 795. Springer, Cham. https://doi.org/10.1007/978-3-031-44851-5_3

Download citation

Publish with us

Policies and ethics

Navigation