Holistic Assembly Planning Framework for Dynamic Human-Robot Collaboration

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 18 (IAS 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 795))

Included in the following conference series:

  • 89 Accesses

Abstract

The combination of humans’ cognitive skills and dexterity with the endurance and repeatability of robots is a promising approach to modern assembly. However, creating an assembly sequence plan and the appropriate division of the workload between humans and robots is a manual and time-consuming job. This work presents a novel framework named “Extract-Enrich-Plan-Review” that facilitates holistic planning of human-robot assembly processes. The framework uses information from CAD files to feed a planning algorithm that generates assembly sequences according to various boundary conditions such as resource capability, part dependencies, timing, and adaptability to human behavior. An expert is kept in the loop to enrich the data and to review and modify the automatically generated sequences. Preliminary results show assembly sequence plans for human-robot collaboration (HRC) as an output with less cycle times compared to human-only assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fechter, M.: Entwicklung einer automatisierten Methode zur Grobplanung hybrider Montagearbeitsplätze. Doctoral dissertation, Stuttgart (2022)

    Google Scholar 

  2. Gu, P., Yan, X.: CAD-directed automatic assembly sequence planning. Int. J. Prod. Res. 33(11), 3069–3100 (1995)

    Google Scholar 

  3. Pane, Y., Arbo, M.H., Aertbeliën, E., Decré, W.: A system architecture for cad-based robotic assembly with sensor-based skills. IEEE Trans. Autom. Sci. Eng. 17(3), 1237–1249 (2020)

    Google Scholar 

  4. Trigui, M., BenHadj, R., Aifaoui, N.: An interoperability CAD assembly sequence plan approach. Int. J. Adv. Manufact. Technol. 79(9–12), 1465–1476 (2015)

    Google Scholar 

  5. Neb, A., Hitzer, J.: Automatic generation of assembly graphs based on 3D models and assembly features. Proc. CIRP 88, 70–75 (2020)

    Google Scholar 

  6. International Organization for Standardization (ISO): ISO 10303-242:2020: Industrial automation systems and integration - Product data representation and exchange - Part 242: Application protocol: Managed modelbased 3D engineering. https://www.iso.org/standard/66654.html (2022-07-26)

    Google Scholar 

  7. Beumelburg, K.: Fähigkeitsorientierte Montageablaufplanung in der direkten Mensch-Roboter-Kooperation Online Publikationen der Universität Stuttgart (2005)

    Google Scholar 

  8. Schröter, D.: Entwicklung einer Methodik zur Planung von Arbeitssystemen in Mensch-Roboter-Kooperation. Fraunhofer Verlag, Stuttgart (2018)

    Google Scholar 

  9. Schmitt, J., Hillenbrand, A., Kranz, P., Kaupp, T.: Assisted human-robot-interaction for industrial assembly: application of spatial augmented reality (sar) for collaborative assembly tasks. In: Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interaction, pp. 52–56 (2021)

    Google Scholar 

  10. Bauer, W., Rally, P., Scholtz, O.: Schnelle Ermittlung sinnvoller MRK-Anwendungen. Zeitschrift für wirtschaftlichen Fabrikbetrieb 113(9), 554–559 (2018)

    Google Scholar 

  11. Berg, J., Reinhart, G.: An integrated planning and programming system for human-robot-cooperation. Proc. CIRP 63, 95–100 (2017)

    Google Scholar 

  12. Ranz, F., Hummel, V., Sihn, W.: Capability-based task allocation in human-robot collaboration. Proc. Manufact. 9, 182–189 (2017)

    Google Scholar 

  13. Raatz, A., Blankemeyer, S., Recker, T., Pischke, D., Nyhuis, P.: Task scheduling method for HRC workplaces based on capabilities and execution time assumptions for robots. CIRP Ann. 69(1), 13–16 (2020)

    Google Scholar 

  14. Michalos, G., Spiliotopoulos, J., Makris, S., Chryssolouris, G.: A method for planning human robot shared tasks. CIRP J. Manufact. Sci. Technol. 22, 76–90 (2018)

    Google Scholar 

  15. Neb, A., Schoenhof, R., Briki, I.: Automation potential analysis of assembly processes based on 3D product assembly models in CAD systems. Proc. CIRP 91, 237–242 (2020)

    Google Scholar 

  16. Schmidbauer, C.: Adaptive Task Sharing between Humans and Cobots in Assembly Processes. Doctoral dissertation, Wien (2022)

    Google Scholar 

  17. Johannsmeier, L., Haddadin, S.: A hierarchical human-robot interaction-planning framework for task allocation in collaborative industrial assembly processes. IEEE Robot. Autom. Lett. 2(1), 41–48 (2016)

    Google Scholar 

  18. Casalino, A., Zanchettin, A.M., Piroddi, L., Rocco, P.: Optimal scheduling of human-robot collaborative assembly operations with time petri nets. IEEE Trans. Autom. Sci. Eng. 18, 70–84 (2021)

    Google Scholar 

  19. Bänziger, T., Kunz, A., Wegener, K.: Optimizing human-robot task allocation using a simulation tool based on standardized work descriptions. J. Intell. Manufact. 31, 1635–1648 (2020)

    Google Scholar 

  20. Weckenborg, C., Kieckhäfer, K., Müller, C., Grunewald, M., Spengler, T.S.: Balancing of assembly lines with collaborative robots. Bus. Res. 13, 93–132 (2020)

    Google Scholar 

  21. Bokranz, R., Landau, K.: Handbuch Industrial Engineering–Produktivitätsmanagement mit MTM Band 1: Konzept. Überarbeitete und erweiterte Auflage, Schäffer-Poeschel Verlag, Stuttgart (2012)

    Google Scholar 

  22. Karger, D.W., Bayha, F.H.: Engineered work measurement: the principles, techniques, and data of methods-time measurement background and foundations of work measurement and methods-time measurement, plus other related material. Industrial Press Inc. (1987)

    Google Scholar 

  23. Komenda, T., Brandstötter, M., Schlund, S.: A comparison of and critical review on cycle time estimation methods for human-robot work systems. Proc. CIRP 104, 1119–1124 (2021)

    Google Scholar 

  24. Weßkamp, V., Seckelmann, T., Barthelmey, A., Kaiser, M., Lemmerz, K., Glogowski, P., Kuhlenkötter, B., Deuse, J.: Development of a sociotechnical planning system for human-robot interaction in assembly systems focusing on small and medium-sized enterprises. Proc. CIRP 81, 1284–1289 (2019)

    Google Scholar 

  25. Pratt, M.J.: Introduction to ISO 10303-the STEP standard for product data exchange. J. Comput. Inf. Sci. Eng. 1(1), 102–103 (2001)

    Google Scholar 

  26. Halperin, D., Latombe, J., Wilson, R.H.: A general framework for assembly planning: the motion space approach. In: Proceedings of the Fourteenth Annual Symposium on Computational Geometry, pp. 9–18 (1998)

    Google Scholar 

  27. MongoDB, Inc. (2021) MongoDB (Version 5.0) [Software]. Available at https://www.mongodb.com/

  28. Ou, L., Xu, X.: Relationship matrix based automatic assembly sequence generation from a CAD model. Comput.-Aided Design 45(7), 1053–1067 (2013)

    Google Scholar 

  29. Ermer, A., Seckelmann, T., Barthelmey, A., Lemmerz, K., Glogowski, P., Kuhlenkötter, B., Deuse, J.: A quick-check to evaluate assembly systems’ HRI potential. Tagungsband Des. 4, 128–137 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the Bayerische Forschungsstiftung funding the research project KoPro under the grant no. AZ-1512-21. In addition, we appreciate the perspective from our KoPro industry partners Fresenius Medical Care, Wittenstein SE, Uhlmann und Zacher, DE software & control and Universal Robots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Schirmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schirmer, F., Kranz, P., Rose, C.G., Schmitt, J., Kaupp, T. (2024). Holistic Assembly Planning Framework for Dynamic Human-Robot Collaboration. In: Lee, SG., An, J., Chong, N.Y., Strand, M., Kim, J.H. (eds) Intelligent Autonomous Systems 18. IAS 2023. Lecture Notes in Networks and Systems, vol 795. Springer, Cham. https://doi.org/10.1007/978-3-031-44851-5_17

Download citation

Publish with us

Policies and ethics

Navigation