Vanadium Phosphate Nanomaterials for Electrochemical Energy Storage

  • Chapter
  • First Online:
Vanadium-Based Nanomaterials for Electrochemical Energy Storage
  • 129 Accesses

Abstract

The principal challenges for lithium/sodium-ion batteries are cost, energy density and cycle life, and the cathode material is the biggest limiting factor. To further improve the power and energy density of lithium/sodium-ion batteries, new cathode materials need to be developed. Vanadium phosphate is regarded as an excellent substitute for lithium-ion battery cathode materials due to its low price, low toxicity, structural stability and high theoretical capacity. Nevertheless, the intrinsically low electrical conductivity hampers the rate performance and cycling stability. In this chapter, we overview the structures, transport characteristics, and (de)lithiation mechanisms of a series of vanadium phosphate, included Li3V2(PO4)3, Na3V2(PO4)3, vanadium fluorophosphates, vanadium pyrophosphate, and vanadium-based mixed polyanion materials. In the same time, the future prospects and feasible research directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Megahed, B. Scrosati, Lithium-ion rechargeable batteries. J. Power Sources 51(1), 79–104 (1994)

    Article  Google Scholar 

  2. K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004)

    Article  Google Scholar 

  3. E. Antolini, LiCoO2: Formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 170(3), 159–171 (2004)

    Article  Google Scholar 

  4. M.Y. Saıdi, J. Barker, H. Huang, J.L. Swoyer, G. Adamson, Electrochemical properties of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Electrochem. Solid-State Lett. 5(7), A149–A151 (2002)

    Article  Google Scholar 

  5. V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012)

    Article  Google Scholar 

  6. H. Huang, S.C. Yin, T. Kerr, N. Taylor, L.F. Nazar, Nanostructured composites: A high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Adv. Mater. 14(21), 1525–1528 (2002)

    Article  Google Scholar 

  7. Z. Jian, W. Han, X. Lu, H. Yang, Y.S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, D. Chen, Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 3(2), 156–160 (2013)

    Article  Google Scholar 

  8. W. Massa, O.V. Yakubovich, O.V. Dimitrova, Crystal structure of a new sodium vanadyl (IV) fluoride phosphate Na3V2O2F[PO4]2. Solid State Sci. 4(4), 495–501 (2002)

    Article  Google Scholar 

  9. K.H. Lii, Y.P. Wang, Y.B. Chen, S.L. Wang, The crystal structure of LiVP2O7. J. Solid State Chem. 86(2), 143–148 (1990)

    Article  Google Scholar 

  10. Y. Zhu, Y. Xu, Y. Liu, C. Luo, C. Wang, Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5(2), 780–787 (2013)

    Article  Google Scholar 

  11. R. Tripathi, T.N. Ramesh, B.L. Ellis, L.F. Nazar, Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew. Chem. Int. Ed. 49(46), 8738–8742 (2010)

    Article  Google Scholar 

  12. M. Bianchini, N. Brisset, F. Fauth, F. Weill, E. Elkaim, E. Suard, C. Masquelier, L. Croguennec, Na3V2(PO4)2F3 revisited: A high-resolution diffraction study. Chem. Mater. 26(14), 4238–4247 (2014)

    Article  Google Scholar 

  13. J. Barker, R.K.B. Gover, P. Burns, A. Bryan, LiVP2O7: A viable lithium-ion cathode material. Electrochem. Solid-State Lett. 8(9), A446–A448 (2005)

    Article  Google Scholar 

  14. H. Yu, Z. Su, L. Wang, Synthesis and electrochemical properties of LiVP2O7/C as novel cathode material for lithium ion batteries. Ceram. Int. 43(18), 17116–17120 (2017)

    Article  Google Scholar 

  15. X. Ji, J. Chen, F. Wang, W. Sun, Y. Ruan, L. Miao, J. Jiang, C. Wang, Water-activated VOPO4 for magnesium ion batteries. Nano Lett. 18(10), 6441–6448 (2018)

    Article  Google Scholar 

  16. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 1188–1194 (1997)

    Article  Google Scholar 

  17. N. Recham, J.-N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, J.-M. Tarascon, A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat. Mater. 9(1), 68 (2010)

    Article  Google Scholar 

  18. M. Ati, M.T. Sougrati, G. Rousse, N. Recham, M.L. Doublet, J.C. Jumas, J.M. Tarascon, Single-step synthesis of FeSO4F1–yOHy (0≤ y≤ 1) positive electrodes for Li-based batteries. Chem. Mater. 24(8), 1472–1485 (2012)

    Article  Google Scholar 

  19. P. Barpanda, M. Ati, B.C. Melot, G. Rousse, J.-N. Chotard, M.-L. Doublet, M.T. Sougrati, S.A. Corr, J.-C. Jumas, J.-M. Tarascon, A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat. Mater. 10(10), 772 (2011)

    Article  Google Scholar 

  20. A. Nytén, A. Abouimrane, M. Armand, T. Gustafsson, J.O. Thomas, Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem. Commun. 7(2), 156–160 (2005)

    Article  Google Scholar 

  21. M.S. Islam, R. Dominko, C. Masquelier, C. Sirisopanaporn, A.R. Armstrong, P.G. Bruce, Silicate cathodes for lithium batteries: Alternatives to phosphates. J. Mater. Chem. 21(27), 9811–9818 (2011)

    Article  Google Scholar 

  22. D. Rangappa, K.D. Murukanahally, T. Tomai, A. Unemoto, I. Honma, Ultrathin nanosheets of Li2MSiO4 (M= Fe, Mn) as high-capacity Li-ion battery electrode. Nano Lett. 12(3), 1146–1151 (2012)

    Article  Google Scholar 

  23. D. Lv, J. Bai, P. Zhang, S. Wu, Y. Li, W. Wen, Z. Jiang, J. Mi, Z. Zhu, Y. Yang, Understanding the high capacity of Li2FeSiO4: In situ XRD/XANES study combined with first-principles calculations. Chem. Mater. 25(10), 2014–2020 (2013)

    Article  Google Scholar 

  24. M. Pivko, M. Bele, E. Tchernychova, N.Z. Logar, R. Dominko, M. Gaberscek, Synthesis of nanometric LiMnPO4 via a two-step technique. Chem. Mater. 24(6), 1041–1047 (2012)

    Article  Google Scholar 

  25. N.N. Bramnik, K. Nikolowski, C. Baehtz, K.G. Bramnik, H. Ehrenberg, Phase transitions occurring upon lithium insertion−extraction of LiCoPO4. Chem. Mater. 19(4), 908–915 (2007)

    Article  Google Scholar 

  26. J. Gopalakrishnan, K.K. Rangan, Vanadium phosphate (V2(PO4)3): A novel NASICO N-type vanadium phosphate synthesized by oxidative deintercalation of sodium from sodium vanadium phosphate (Na3V2(PO4)3). Chem. Mater. 4(4), 745–747 (1992)

    Article  Google Scholar 

  27. D. Morgan, G. Ceder, M.Y. Saidi, J. Barker, J. Swoyer, H. Huang, G. Adamson, Experimental and computational study of the structure and electrochemical properties of LixM2(PO4)3 compounds with the monoclinic and rhombohedral structure. Chem. Mater. 14(11), 4684–4693 (2002)

    Article  Google Scholar 

  28. S.C. Yin, H. Grondey, P. Strobel, M. Anne, L.F. Nazar, Electrochemical property: Structure relationships in monoclinic Li3-yV2(PO4)3. J. Am. Chem. Soc. 125(34), 10402–10411 (2003)

    Article  Google Scholar 

  29. H. Huang, T. Faulkner, J. Barker, M.Y. Saidi, Lithium metal phosphates, power and automotive applications. J. Power Sources 189(1), 748–751 (2009)

    Article  Google Scholar 

  30. X. Rui, Q. Yan, M. Skyllas-Kazacos, T.M. Lim, Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. J. Power Sources 258, 19–38 (2014)

    Article  Google Scholar 

  31. M.S. Whittingham, Y. Song, S. Lutta, P.Y. Zavalij, N.A. Chernova, Some transition metal (oxy) phosphates and vanadium oxides for lithium batteries. J. Mater. Chem. 15(33), 3362–3379 (2005)

    Article  Google Scholar 

  32. C. Chang, J. **ang, X. Shi, X. Han, L. Yuan, J. Sun, Rheological phase reaction synthesis and electrochemical performance of Li3V2(PO4)3/carbon cathode for lithium ion batteries. Electrochim. Acta 53(5), 2232–2237 (2008)

    Article  Google Scholar 

  33. Z. Chen, C. Dai, G. Wu, M. Nelson, X. Hu, R. Zhang, J. Liu, J. **a, High performance Li3V2(PO4)3/C composite cathode material for lithium ion batteries studied in pilot scale test. Electrochim. Acta 55(28), 8595–8599 (2010)

    Article  Google Scholar 

  34. H. Liu, C. Cheng, X. Huang, J. Li, Hydrothermal synthesis and rate capacity studies of Li3V2(PO4)3 nanorods as cathode material for lithium-ion batteries. Electrochim. Acta 55(28), 8461–8465 (2010)

    Article  Google Scholar 

  35. X. Du, W. He, X. Zhang, Y. Yue, H. Liu, X. Zhang, D. Min, X. Ge, Y. Du, Enhancing the electrochemical performance of lithium ion batteries using mesoporous Li3V2(PO4)3/C microspheres. J. Mater. Chem. 22(13), 5960–5969 (2012)

    Article  Google Scholar 

  36. M.M. Ren, Z. Zhou, X.P. Gao, W.X. Peng, J.P. Wei, Core−shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries. J. Phys. Chem. C 112(14), 5689–5693 (2008)

    Article  Google Scholar 

  37. Q. Kuang, Y. Zhao, X. An, J. Liu, Y. Dong, L. Chen, Synthesis and electrochemical properties of Co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. Electrochim. Acta 55(5), 1575–1581 (2010)

    Article  Google Scholar 

  38. M. Ren, Z. Zhou, Y. Li, X.P. Gao, J. Yan, Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J. Power Sources 162(2), 1357–1362 (2006)

    Article  Google Scholar 

  39. C. Deng, S. Zhang, S.Y. Yang, Y. Gao, B. Wu, L. Ma, B.L. Fu, Q. Wu, F.L. Liu, Effects of Ti and Mg codo** on the electrochemical performance of Li3V2(PO4)3 cathode material for lithium ion batteries. J. Phys. Chem. C 115(30), 15048–15056 (2011)

    Article  Google Scholar 

  40. L.-L. Zhang, X. Zhang, Y.-M. Sun, W. Luo, X.-L. Hu, X.-J. Wu, Y.-H. Huang, Improved electrochemical performance in Li3V2(PO4)3 promoted by niobium-incorporation. J. Electrochem. Soc. 158(8), A924–A929 (2011)

    Article  Google Scholar 

  41. S. Lee, S.S. Park, Atomistic simulation study of monoclinic Li3V2(PO4)3 as a cathode material for lithium ion battery: Structure, defect chemistry, lithium ion transport pathway, and dynamics. J. Phys. Chem. C 116(48), 25190–25197 (2012)

    Article  Google Scholar 

  42. X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen, Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim. Acta 55(7), 2384–2390 (2010)

    Article  Google Scholar 

  43. C.M. Burba, R. Frech, Vibrational spectroscopic studies of monoclinic and rhombohedral Li3V2(PO4)3. Solid State Ionics 177(39–40), 3445–3454 (2007)

    Article  Google Scholar 

  44. Y. Lu, L. Wang, J. Song, D. Zhang, M. Xu, J.B. Goodenough, Aluminum-stabilized NASICON-Structured Li3V2(PO4)3. J. Mater. Chem. A 1(1), 68–72 (2013)

    Article  Google Scholar 

  45. Y. **a, W. Zhang, H. Huang, Y. Gan, C. Li, X. Tao, Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries. Mater. Sci. Eng. B 176(8), 633–639 (2011)

    Article  Google Scholar 

  46. J. Barker, R.K.B. Gover, P. Burns, A. Bryan, The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate, Li3V2(PO4)3. J. Electrochem. Soc. 154(4), A307–A313 (2007)

    Article  Google Scholar 

  47. Y.Z. Dong, Y.M. Zhao, H. Duan, The effect of do** Mg2+ on the structure and electrochemical properties of Li3V2(PO4)3 cathode materials for lithium-ion batteries. J. Electrochem. Chem. 660(1), 14–21 (2011)

    Google Scholar 

  48. D.-W. Han, S.-J. Lim, Y.-I. Kim, S.H. Kang, Y.C. Lee, Y.-M. Kang, Facile lithium ion transport through superionic pathways formed on the surface of Li3V2(PO4)3/C for high power Li ion battery. Chem. Mater. 26(12), 3644–3650 (2014)

    Article  Google Scholar 

  49. Q. Chen, X. Qiao, Y. Wang, T. Zhang, C. Peng, W. Yin, L. Liu, Electrochemical performance of Li3−xNaxV2(PO4)3/C composite cathode materials for lithium ion batteries. J. Power Sources 201, 267–273 (2012)

    Article  Google Scholar 

  50. Q. Kuang, Y. Zhao, Z. Liang, Synthesis and electrochemical properties of Na-doped Li3V2(PO4)3 cathode materials for Li-ion batteries. J. Power Sources 196(23), 10169–10175 (2011)

    Article  Google Scholar 

  51. R. Wang, S. **ao, X. Li, J. Wang, H. Guo, F. Zhong, Structural and electrochemical performance of Na-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries via rheological phase reaction. J. Alloys Compd. 575, 268–272 (2013)

    Article  Google Scholar 

  52. Y. Zhang, P. Nie, L. Shen, G. Xu, H. Deng, H. Luo, X. Zhang, Rhombohedral NASICON-structured Li2NaV2(PO4)3 with single voltage plateau for superior lithium storage. RSC Adv. 4(17), 8627–8631 (2014)

    Article  Google Scholar 

  53. W. Wang, Z. Chen, J. Zhang, C. Dai, J. Li, D. Ji, A comparative structural and electrochemical study of monoclinic Li3V2(PO4)3/C and rhombohedral Li2.5Na0.5V(2−2x/3)Nix(PO4)3/C. Electrochim. Acta 103, 259–265 (2013)

    Article  Google Scholar 

  54. Y. Tang, C. Wang, J. Zhou, Y. Bi, Y. Liu, D. Wang, S. Shi, G. Li, Li2NaV2(PO4)3: A novel composite cathode material with high ratio of rhombohedral phase. J. Power Sources 227, 199–203 (2013)

    Article  Google Scholar 

  55. L. Zhang, T. Yang, Q. Yang, Z. H. Huang, M. H. Fang, Y. G. Liu, vol 519 (Trans Tech Publ), pp. 137–141

    Google Scholar 

  56. C. Sun, S. Rajasekhara, Y. Dong, J.B. Goodenough, Hydrothermal synthesis and electrochemical properties of Li3V2(PO4)3/C-based composites for lithium-ion batteries. ACS Appl. Mater. Interfaces 3(9), 3772–3776 (2011)

    Article  Google Scholar 

  57. Y.G. Mateyshina, N.F. Uvarov, Electrochemical behavior of Li3−xM′xV2−yM″y(PO4)3 (M′= K, M ″= Sc, Mg+ Ti)/C composite cathode material for lithium-ion batteries. J. Power Sources 196(3), 1494–1497 (2011)

    Article  Google Scholar 

  58. S. Zhong, L. Liu, J. Liu, J. Wang, J. Yang, High-rate characteristic of F-substitution Li3V2(PO4)3 cathode materials for Li–ion batteries. Solid State Commun. 149(39–40), 1679–1683 (2009)

    Google Scholar 

  59. C. Wang, Z. Guo, W. Shen, A. Zhang, Q. Xu, H. Liu, Y. Wang, Application of sulfur-doped carbon coating on the surface of Li3V2(PO4)3 composites to facilitate Li-ion storage as cathode materials. J. Mater. Chem. A 3(11), 6064–6072 (2015)

    Article  Google Scholar 

  60. Q. Kuang, Y. Zhao, Two-step carbon coating of lithium vanadium phosphate as high-rate cathode for lithium-ion batteries. J. Power Sources 216, 33–35 (2012)

    Article  Google Scholar 

  61. Y. Luo, X. Xu, Y. Zhang, Y. Pi, Y. Zhao, X. Tian, Q. An, Q. Wei, L. Mai, Hierarchical carbon decorated Li3V2(PO4)3 as a bicontinuous cathode with high-rate vapability and broad temperature adaptability. Adv. Energy Mater. 4(16), 1400107 (2014)

    Article  Google Scholar 

  62. L. Zhang, X.L. Wang, J.Y. **ang, Y. Zhou, S.J. Shi, J.P. Tu, Synthesis and electrochemical performances of Li3V2(PO4)3/(Ag+C) composite cathode. J. Power Sources 195(15), 5057–5061 (2010)

    Article  Google Scholar 

  63. M.-S. Choi, H.-S. Kim, Y.-M. Lee, B.-S. **, Enhanced electrochemical performance of Li3V2(PO4)3/Ag–graphene composites as cathode materials for Li-ion batteries. J. Mater. Chem. A 2(21), 7873–7879 (2014)

    Article  Google Scholar 

  64. T. Jiang, Y.J. Wei, W.C. Pan, Z. Li, X. Ming, G. Chen, C.Z. Wang, Preparation and electrochemical studies of Li3V2(PO4)3/Cu composite cathode material for lithium ion batteries. J. Alloys Compd. 488(1), L26–L29 (2009)

    Article  Google Scholar 

  65. J. Kim, J.K. Yoo, Y.S. Jung, K. Kang, Li3V2(PO4)3/conducting polymer as a high power 4 V-class lithium battery electrode. Adv. Energy Mater. 3(8), 1004–1007 (2013)

    Article  Google Scholar 

  66. G. Zhang, X. Li, H. Jia, X. Pang, H. Yang, Y. Wang, K. Ding, Preparation and characterization of polyaniline (PANI) doped-Li3V2(PO4)3. Int. J. Electrochem. Sci. 7, 830–843 (2012)

    Article  Google Scholar 

  67. M. Secchiaroli, F. Nobili, R. Tossici, G. Giuli, R. Marassi, Synthesis and electrochemical characterization of high rate capability Li3V2(PO4)3/C prepared by using poly (acrylic acid) and D-(+)-glucose as carbon sources. J. Power Sources 275, 792–798 (2015)

    Article  Google Scholar 

  68. J. Wang, X. Zhang, J. Liu, G. Yang, Y. Ge, Z. Yu, R. Wang, X. Pan, Long-term cyclability and high-rate capability of Li3V2(PO4)3/C cathode material using PVA as carbon source. Electrochim. Acta 55(22), 6879–6884 (2010)

    Article  Google Scholar 

  69. L. Wang, Z. Tang, L. Ma, X. Zhang, High-rate cathode based on Li3V2(PO4)3/C composite material prepared via a glycine-assisted sol–gel method. Electrochem. Commun. 13(11), 1233–1235 (2011)

    Article  Google Scholar 

  70. K.S. Park, S.B. Schougaard, J.B. Goodenough, Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries. Adv. Mater. 19(6), 848–851 (2007)

    Article  Google Scholar 

  71. H. Yan, W. Chen, X. Wu, Y. Li, Conducting polyaniline-wrapped lithium vanadium phosphate nanocomposite as high-rate and cycling stability cathode for lithium-ion batteries. Electrochim. Acta 146, 295–300 (2014)

    Article  Google Scholar 

  72. A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 148–159

    Google Scholar 

  73. H. Tan, L. Xu, H. Geng, X. Rui, C. Li, S. Huang, Nanostructured Li3V2(PO4)3 cathodes. Small 14(21), 1800567 (2018)

    Article  Google Scholar 

  74. M. Okubo, J. Kim, T. Kudo, H. Zhou, I. Honma, Anisotropic surface effect on electronic structures and electrochemical properties of LiCoO2. J. Phys. Chem. C 113(34), 15337–15342 (2009)

    Article  Google Scholar 

  75. M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, I. Honma, Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129(23), 7444–7452 (2007)

    Article  Google Scholar 

  76. B. Pei, Z. Jiang, W. Zhang, Z. Yang, A. Manthiram, Nanostructured Li3V2(PO4)3 cathode supported on reduced graphene oxide for lithium-ion batteries. J. Power Sources 239, 475–482 (2013)

    Article  Google Scholar 

  77. X. Li, W. He, Z. **ao, F. Peng, J. Chen, Ionothermal synthesis and rate performance studies of nanostructured Li3V2(PO4)3/C composites as cathode materials for lithium-ion batteries. J. Solid State Chem. 17(7), 1991–2000 (2013)

    Google Scholar 

  78. R. Zhang, X. Yang, Y. Gao, Y. Ju, H. Qiu, X. Meng, G. Chen, Y. Wei, In-situ preparation of Li3V2(PO4)3/C and carbon nanofibers hierarchical cathode by the chemical vapor deposition reaction. Electrochim. Acta 188, 254–261 (2016)

    Article  Google Scholar 

  79. Q. Wei, Q. An, D. Chen, L. Mai, S. Chen, Y. Zhao, K.M. Hercule, L. Xu, A. Minhas-Khan, Q. Zhang, One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. Nano Lett. 14(2), 1042–1048 (2014)

    Article  Google Scholar 

  80. F. Teng, Z.-H. Hu, X.-H. Ma, L.-C. Zhang, C.-X. Ding, Y. Yu, C.-H. Chen, Hydrothermal synthesis of plate-like carbon-coated Li3V2(PO4)3 and its low temperature performance for high power lithium ion batteries. Electrochim. Acta 91, 43–49 (2013)

    Article  Google Scholar 

  81. Y.Q. Qiao, X.L. Wang, Y.J. Mai, J.Y. **ang, D. Zhang, C.D. Gu, J.P. Tu, Synthesis of plate-like Li3V2(PO4)3/C as a cathode material for Li-ion batteries. J. Power Sources 196(20), 8706–8709 (2011)

    Article  Google Scholar 

  82. S. Wang, Z. Zhang, A. Deb, C. Yang, L. Yang, S.-i. Hirano, Nanostructured Li3V2(PO4)3/C composite as high-rate and long-life cathode material for lithium ion batteries. Electrochim. Acta 143, 297–304 (2014)

    Article  Google Scholar 

  83. L. Mai, S. Li, Y. Dong, Y. Zhao, Y. Luo, H. Xu, Long-life and high-rate Li3V2(PO4)3/C nanosphere cathode materials with three-dimensional continuous electron pathways. Nanoscale 5(11), 4864–4869 (2013)

    Article  Google Scholar 

  84. C. Zhu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett. 14(4), 2175–2180 (2014)

    Article  Google Scholar 

  85. Y. Fang, L. **ao, X. Ai, Y. Cao, H. Yang, Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 27(39), 5895–5900 (2015)

    Article  Google Scholar 

  86. W. Song, X. Ji, Z. Wu, Y. Zhu, Y. Yang, J. Chen, M. **g, F. Li, C.E. Banks, First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. J. Mater. Chem. A 2(15), 5358–5362 (2014)

    Article  Google Scholar 

  87. Y. Uebou, T. Kiyabu, S. Okada, J.I. Yamaki, The reports of institute of advanced material study. Kyushu Univ. 16(1), 1–5 (2002)

    Google Scholar 

  88. Z. Jian, C. Yuan, W. Han, X. Lu, L. Gu, X. **, Y.S. Hu, H. Li, W. Chen, D. Chen, Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries. Adv. Funct. Mater. 24(27), 4265–4272 (2014)

    Article  Google Scholar 

  89. K. Du, H. Guo, G. Hu, Z. Peng, Y. Cao, Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries. J. Power Sources 223, 284–288 (2013)

    Article  Google Scholar 

  90. Y. Jiang, Z. Yang, W. Li, L. Zeng, F. Pan, M. Wang, X. Wei, G. Hu, L. Gu, Y. Yu, Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv. Energy Mater. 5(10), 1402104 (2015)

    Article  Google Scholar 

  91. J. Liu, K. Tang, K. Song, P.A. van Aken, Y. Yu, J. Maier, Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale 6(10), 5081–5086 (2014)

    Article  Google Scholar 

  92. A.K. Geim, Graphene: Status and prospects. Science 324(5934), 1530–1534 (2009)

    Article  Google Scholar 

  93. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: A review of graphene. Chem. Rev. 110(1), 132–145 (2009)

    Article  Google Scholar 

  94. Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials. Energy Environ. Sci. 4(4), 1113–1132 (2011)

    Article  Google Scholar 

  95. D. Chen, H. Feng, J. Li, Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 112(11), 6027–6053 (2012)

    Article  Google Scholar 

  96. G. Kucinskis, G. Bajars, J. Kleperis, Graphene in lithium ion battery cathode materials: A review. J. Power Sources 240, 66–79 (2013)

    Article  Google Scholar 

  97. X. Rui, W. Sun, C. Wu, Y. Yu, Q. Yan, An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Adv. Mater. 27(42), 6670–6676 (2015)

    Article  Google Scholar 

  98. Y. Xu, Q. Wei, C. Xu, Q. Li, Q. An, P. Zhang, J. Sheng, L. Zhou, L. Mai, Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 6(14), 1600389 (2016)

    Article  Google Scholar 

  99. X. Yang, C. Cheng, Y. Wang, L. Qiu, D. Li, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341(6145), 534–537 (2013)

    Article  Google Scholar 

  100. G. Li, Z. Yang, Y. Jiang, C. **, W. Huang, X. Ding, Y. Huang, Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy 25, 211–217 (2016)

    Article  Google Scholar 

  101. Y. Li, Q. An, Y. Cheng, Y. Liang, Y. Ren, C.-J. Sun, H. Dong, Z. Tang, G. Li, Y. Yao, A high-voltage rechargeable magnesium-sodium hybrid battery. Nano Energy 34, 188–194 (2017)

    Article  Google Scholar 

  102. J. Zeng, Y. Yang, S. Lai, J. Huang, Y. Zhang, J. Wang, J. Zhao, A promising high-voltage cathode material based on mesoporous Na3V2(PO4)3/C for rechargeable magnesium batteries. Chem. Eur. J. 23(66), 16898–16905 (2017)

    Article  Google Scholar 

  103. P. Hu, T. Zhu, X. Wang, X. Zhou, X. Wei, X. Yao, W. Luo, C. Shi, K.A. Owusu, L. Zhou, Aqueous Zn//Zn(CF3SO3)2//Na3V2(PO4)3 batteries with simultaneous Zn2+/Na+ intercalation/de-intercalation. Nano Energy 58, 492–498 (2019)

    Article  Google Scholar 

  104. W. Massa, O.V. Yakubovich, O.V. Dimitrova, Crystal structure of a new sodium vanadyl(IV) fluoride phosphate Na3V2O2F[PO4]2. Solid State Sci. 33(28), 495–501 (2010)

    Google Scholar 

  105. G. Rkb, P. Burns, A. Bryan, M.Y. Saidi, J.L. Swoyer, J. Barker, LiVPO4F: A new active material for safe lithium-ion batteries. Solid State Ionics 177(26), 2635–2638 (2006)

    Google Scholar 

  106. A. Padhi, V. Manivannan, J. Goodenough, Tuning the position of the redox couples in materials with NASICON structure by anionic substitution. J. Electrochem. Soc. 145(5), 1518 (1998)

    Article  Google Scholar 

  107. K. Chihara, A. Katogi, K. Kubota, S. Komaba, KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. Chem. Commun. 53(7), 5208 (2017)

    Article  Google Scholar 

  108. J. Barker, M. Saidi, J. Swoyer, Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. J. Electrochem. Soc. 150(10), A1394–A1398 (2003)

    Article  Google Scholar 

  109. J.-M. Ateba Mba, C. Masquelier, E. Suard, L. Croguennec, Synthesis and crystallographic study of homeotypic LiVPO4F and LiVPO4O. Chem. Mater. 24(6), 1223–1234 (2012)

    Article  Google Scholar 

  110. B.L. Ellis, T. Ramesh, L.J. Davis, G.R. Goward, L.F. Nazar, Structure and electrochemistry of two-electron redox couples in lithium metal fluorophosphates based on the tavorite structure. Chem. Mater. 23(23), 5138–5148 (2011)

    Article  Google Scholar 

  111. J.C. Zheng, B. Zhang, Z.H. Yang, Novel synthesis of LiVPO4F cathode material by chemical lithiation and postannealing. J. Power Sources 202(1), 380–383 (2012)

    Article  Google Scholar 

  112. X. Yang, X. Wang, K. Wang, G. Chang, Improved Li-storage performance of CNTs-decorated LiVPO4F/C cathode material for electrochemical energy storage. Ceram. Int. 44(4), 3825–3829 (2017)

    Article  Google Scholar 

  113. M. Law, P. Balaya, NaVPO4F with high cycling stability as a promising cathode for sodium-ion battery. Energy Stor. Mater. 10, 102–113 (2018)

    Google Scholar 

  114. J. Barker, M.Y. Saidi, J.L. Swoyer, A sodium-ion cell based on the fluorophosphate compound NaVPO4F. Electrochem. Solid-State Lett. 6(1), A1–A4 (2003)

    Article  Google Scholar 

  115. Y. Lu, S. Zhang, Y. Li, L. Xue, G. Xu, X. Zhang, Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries. J. Power Sources 247(8), 770–777 (2014)

    Article  Google Scholar 

  116. S.S. Fedotov, N.R. Khasanova, A.S. Samarin, O.A. Drozhzhin, D. Batuk, O.M. Karakulina, J. Hadermann, A.M. Abakumov, E.V. Antipov, AVPO4F (A = Li, K): A 4 V cathode material for high-power rechargeable batteries. ChemInform 47(15), 411–415 (2016)

    Article  Google Scholar 

  117. H. Kim, D.-H. Seo, M. Bianchini, R.J. Clément, H. Kim, J.C. Kim, Y. Tian, T. Shi, W.-S. Yoon, G. Ceder, A new strategy for high-voltage cathodes for K-ion batteries: Stoichiometric KVPO4F. Adv. Energy Mater. 8(26), 1801591 (2018)

    Article  Google Scholar 

  118. S. Liu, L. Wang, J. Liu, M. Zhou, L. Shao, Na3V2(PO4)2F3-SWCNT: A high voltage cathode for non-aqueous and aqueous sodium-ion batteries. J. Mater. Chem. A 7(1), 248–256 (2018)

    Article  Google Scholar 

  119. Z. Feng, X. Chen, L. Qiao, A.L. Lipson, T.T. Fister, L. Zeng, C. Kim, T. Yi, N. Sa, D.L. Proffit, A.K. Burrell, J. Cabana, B.J. Ingram, M.D. Biegalski, M.J. Bedzyk, P. Fenter, Phase-controlled electrochemical activity of epitaxial Mg-spinel thin films. ACS Appl. Mater. Interfaces 7(51), 28438–28443 (2015)

    Article  Google Scholar 

  120. P. Serras, V. Palomares, A. Goñi, I.G.D. Muro, P. Kubiak, L. Lezama, T. Rojo, High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2x. J. Mater. Chem. 22(41), 22301–22308 (2012)

    Article  Google Scholar 

  121. J.M. Le Meins, M.P. Crosnier-Lopez, A. Hemon-Ribaud, G. Courbion, Phase transitions in the Na3M2(PO4)2F3 family (M=Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, thermal, structural, and magnetic studies. J. Solid State Chem. 148(2), 260–277 (1999)

    Article  Google Scholar 

  122. J. Zhao, L. Mu, Y. Qi, Y.S. Hu, H. Liu, S. Dai, A phase-transfer assisted solvo-thermal strategy for low-temperature synthesis of Na3(VO1-xPO4)2F1+2x cathodes for sodium-ion batteries. Chem. Commun. 51(33), 7160–7163 (2015)

    Article  Google Scholar 

  123. C. Zhu, W. Chao, C.C. Chen, P. Kopold, Y. Yan, A high power-high energy Na3V2(PO4)2F3 sodium cathode: Investigation of transport parameters, rational design and realization. Chem. Mater. 29(12), 5207–5205 (2017)

    Article  Google Scholar 

  124. Y. Yin, F. **ong, C. Pei, Y. Xu, Q. An, S. Tan, Z. Zhuang, J. Sheng, Q. Li, L. Mai, Robust three-dimensional graphene skeleton encapsulated Na3V2(PO4)2F3 nanoparticles as a high-rate and long-life cathode of sodium-ion batteries. Nano Energy 41, 452–459 (2017)

    Article  Google Scholar 

  125. D. Chao, C.H.M. Lai, L. Pei, Q. Wei, Z.X. Shen, Sodium vanadium fluorophosphates (NVOPF) array cathode designed for high-rate full sodium ion storage device. Adv. Energy Mater. 8(16), 1800058 (2018)

    Article  Google Scholar 

  126. J. Barker, R.K.B. Gover, P. Burns, A. Bryan, LiVP2O7: A viable lithium-ion cathode material. Electrochem. Solid-State Lett. 8(9), 446–448 (2005)

    Article  Google Scholar 

  127. H. Yu, Z. Su, H. Tian, Two-step synthesis of LiVP2O7/C for use as cathode material in lithium-ion batteries. Int. J. Electrochem. Sci. 13, 4526–4534 (2018)

    Article  Google Scholar 

  128. Y. Kee, N. Dimov, A. Staikov, P. Barpanda, Y.-C. Lu, K. Minami, S. Okada, Insight into the limited electrochemical activity of NaVP2O7. RSC Adv. 5(80), 64991–64996 (2015)

    Article  Google Scholar 

  129. V. Mani, N. Kalaiselvi, LiVP2O7/C: A new insertion anode material for high-rate lithium-ion battery applications. Inorg. Chem. 55(8), 3807–3814 (2016)

    Article  Google Scholar 

  130. C. Masquelier, F. D’Yvoire, N. Rodier, Crystal structure of the sodium ion conductor α-Na7Fe3(P2O7)4: Evidence for a long-range ordering of the Na+ ions. J. Solid State Chem. 95(1), 156–167 (1991)

    Article  Google Scholar 

  131. H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee, H. Fei, M. Ding, J. Lau, M. Li, C. Wang, X. Xu, G. Hao, B. Papandrea, I. Shakir, B. Dunn, Y. Huang, X. Duan, Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356(6338), 599–604 (2017)

    Article  Google Scholar 

  132. R.A. Shakoor, D.H. Seo, H. Kim, Y.U. Park, J. Kim, S.W. Kim, H. Gwon, S. Lee, K. Kang, A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem. 22(38), 20535–20541 (2012)

    Article  Google Scholar 

  133. J. Yu, Z. Yang, W. Li, L. Zeng, F. Pan, W. Min, W. **ang, G. Hu, G. Lin, Y. Yan, Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Adv. Energy Mater. 5(10), 1402104 (2015)

    Article  Google Scholar 

  134. J. Kim, I. Park, H. Kim, K.-Y. Park, Y.-U. Park, K. Kang, Tailoring a new 4V-class cathode material for Na-ion batteries. Adv. Energy Mater. 6(6), 1502147 (2016)

    Article  Google Scholar 

  135. Z. Yujie, X. Yunhua, L. Yihang, L. Chao, W. Chunsheng, Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5(2), 780–787 (2012)

    Google Scholar 

  136. Q. Kuang, J. Xu, Y. Zhao, X. Chen, L. Chen, Layered monodiphosphate Li9V3(P2O7)3(PO4)2: A novel cathode material for lithium-ion batteries. Electrochim. Acta 56(5), 2201–2205 (2011)

    Article  Google Scholar 

  137. S.C. Yin, P.S. Strobel, H. Grondey, L.F. Nazar, Li2.5V2(PO4)3: A room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li3V2(PO4)3. Cheminform 35(27), 1456–1465 (2004)

    Article  Google Scholar 

  138. D. Geiger, P. Balasubramanian, M. Mancini, P. Axmann, M. Wohlfahrt-Mehrens, U. Kaiser, Investigation of the cathode material Li9V3(P2O7)3(PO4)2 for Li-batteries using Cs-corrected HRTEM. In European Microscopy Congress 2016: Proceedings, (Ed.).

    Google Scholar 

  139. S.Y. Lim, H. Kim, J. Chung, J.H. Lee, B.G. Kim, J.-J. Choi, K.Y. Chung, W. Cho, S.-J. Kim, W.A. Goddard, Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery. Proc. Natl. Acad. Sci. 111(2), 599–604 (2014)

    Article  Google Scholar 

  140. M. Casascabanas, V.V. Roddatis, D. Saurel, P. Kubiak, J. Carreterogonzález, V. Palomares, P. Serras, T. Rojo, Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4. J. Mater. Chem. 22(34), 17421–17423 (2012)

    Article  Google Scholar 

  141. C. Wu, X. Lu, L. Peng, K. Xu, X. Peng, J. Huang, G. Yu, Y. **e, Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 4(1), 1–7 (2013)

    Article  Google Scholar 

  142. L. Zhou, Q. Liu, Z. Zhang, K. Zhang, F. **ong, S. Tan, Q. An, Y.M. Kang, Z. Zhou, L. Mai, Interlayer-spacing-regulated VOPO4 nanosheets with fast kinetics for high-capacity and durable rechargeable magnesium batteries. Adv. Mater. 30(32), 1801984 (2018)

    Article  Google Scholar 

  143. K.L. Harrison, C.A. Bridges, C.U. Segre, C.D. Varnado Jr., D. Applestone, C.W. Bielawski, M.P. Paranthaman, A. Manthiram, Chemical and electrochemical lithiation of LiVOPO4 cathodes for lithium-ion batteries. Chem. Mater. 26(12), 3849–3861 (2014)

    Article  Google Scholar 

  144. Y. Zhu, L. Peng, D. Chen, G. Yu, Intercalation pseudocapacitance in ultrathin VOPO4 nanosheets: Toward high-rate alkali-ion-based electrochemical energy storage. Nano Lett. 16(1), 742–747 (2015)

    Article  Google Scholar 

  145. Y.-C. Lin, B. Wen, K.M. Wiaderek, S. Sallis, H. Liu, S.H. Lapidus, O.J. Borkiewicz, N.F. Quackenbush, N.A. Chernova, K. Karki, F. Omenya, P.J. Chupas, L.F.J. Piper, M.S. Whittingham, K.W. Chapman, S.P. Ong, Thermodynamics, kinetics and structural evolution of ε-LiVOPO4 over multiple lithium intercalation. Chem. Mater. 28(6), 1794–1805 (2016)

    Article  Google Scholar 

  146. J. Song, M. Xu, L. Wang, J.B. Goodenough, Exploration of NaVOPO4 as a cathode for a Na-ion battery. Chem. Commun. 49(46), 5280–5282 (2013)

    Article  Google Scholar 

  147. G. He, A. Huq, W.H. Kan, A. Manthiram, β-NaVOPO4 obtained by a low-temperature synthesis process: A new 3.3 V cathode for sodium-ion batteries. Chem. Mater. 28(5), 1503–1512 (2016)

    Article  Google Scholar 

  148. L. Benhamada, A. Grandin, M.M. Borel, A. Leclaire, B. Raveau, KVPO5, an intersecting tunnel structure closely related to the hexagonal tungsten bronze. Acta Crystallogr. 47(6), 1138–1141 (1991)

    Google Scholar 

  149. J. Ding, Y.-C. Lin, J. Liu, J. Rana, H. Zhang, H. Zhou, I.-H. Chu, K.M. Wiaderek, F. Omenya, N.A. Chernova, K.W. Chapman, L.F.J. Piper, S.P. Ong, M.S. Whittingham, KVOPO4: A new high capacity multielectron Na-ion battery cathode. Adv. Energy Mater. 8(21), 1800221 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mai, L., Xu, L., Chen, W. (2023). Vanadium Phosphate Nanomaterials for Electrochemical Energy Storage. In: Vanadium-Based Nanomaterials for Electrochemical Energy Storage. Springer, Cham. https://doi.org/10.1007/978-3-031-44796-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44796-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44795-2

  • Online ISBN: 978-3-031-44796-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation