Vanadium Oxide Nanomaterials for Electrochemical Energy Storage

  • Chapter
  • First Online:
Vanadium-Based Nanomaterials for Electrochemical Energy Storage
  • 100 Accesses

Abstract

It is known to all that vanadium oxides (VOs) have multi-oxidation states and various crystalline structures. On account of the unique morphology and large specific surface area, nanostructured VOs used as the electrode active materials have attracted increasing attentions for electrochemical energy storage recently. In this chapter, we overview the recent development of nanostructured VOs including VO2, V2O5, V6O13, V2O3. Meanwhile, VOs structure, nanostructured materials strategy, electrochemical performance and mechanism are emphasized with examples discussed. The advantages and challenges of VOs are compared and future directions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Gu, I. Belharouak, J. Zheng, H. Wu, J. **ao, A. Genc, K. Amine, S. Thevuthasan, D.R. Baer, J.G. Zhang, N.D. Browning, J. Liu, C. Wang, Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7(1), 760–767 (2013)

    Article  Google Scholar 

  2. G.X. Wang, S. Zhong, D.H. Bradhurst, S.X. Dou, H.K. Liu, Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries. J. Power Sources 76(2), 141–146 (1998)

    Article  Google Scholar 

  3. D. Guyomard, J.M. Tarascon, Li metal-free rechargeable LiMn2O4/carbon cells: Their understanding and optimization. J. Electrochem. Soc. 139(4), 937 (1992)

    Article  Google Scholar 

  4. J.M. Tarascon, E. Wang, F.K. Shokoohi, W.R. McKinnon, S. Colson, The spinel phase of LiMn2O4 as a cathode in secondary lithium cells. J. Electrochem. Soc. 138(10), 2859 (1991)

    Article  Google Scholar 

  5. S.-Y. Chung, J.T. Bloking, Y.-M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1(2), 123–128 (2002)

    Article  Google Scholar 

  6. B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging. Nature 458(7235), 190–193 (2009)

    Article  Google Scholar 

  7. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 1188 (1997)

    Article  Google Scholar 

  8. J. Kim, Y. Kim, J. Yoo, G. Kwon, Y. Ko, K. Kang, Organic batteries for a greener rechargeable world. Nat. Rev. Mater. 8(1), 54–70 (2023)

    Article  Google Scholar 

  9. S. Ohno, W.G. Zeier, Sodium is the new lithium. Nat. Energy 7(8), 686–687 (2022)

    Article  Google Scholar 

  10. Y. Zhang, J.R.D. DeBord, C.J. O’Connor, R.C. Haushalter, A. Clearfield, J. Zubieta, Solid-state coordination chemistry: Hydrothermal synthesis of layered vanadium oxides with interlayer metal coordination complexes. Angew. Chem. Int. Ed. Engl. 35(9), 989–991 (1996)

    Article  Google Scholar 

  11. A.-M. Cao, J.-S. Hu, H.-P. Liang, L.-J. Wan, Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem. Int. Ed. 44(28), 4391–4395 (2005)

    Article  Google Scholar 

  12. D. Chen, H. Quan, S. Luo, X. Luo, F. Deng, H. Jiang, Reduced graphene oxide enwrapped vanadium pentoxide nanorods as cathode materials for lithium-ion batteries. Physica E 56, 231–237 (2014)

    Article  Google Scholar 

  13. Y. Zhang, X. Ge, Q. Kang, Z. Kong, Y. Wang, L. Zhan, Vanadium oxide nanorods embed in porous graphene aerogel as high-efficiency polysulfide-trap**-conversion mediator for high performance lithium-sulfur batteries. Chem. Eng. J. 393, 124570 (2020)

    Article  Google Scholar 

  14. L. Mai, L. Xu, C. Han, X. Xu, Y. Luo, S. Zhao, Y. Zhao, Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 10(11), 4750–4755 (2010)

    Article  Google Scholar 

  15. J. Huang, X. Wang, J. Liu, X. Sun, L. Wang, X. He, Flexible free-standing VO2(B) nanobelt films as additive free cathode for lithium ion batteries. Int. J. Electrochem. Sci. 6, 1709–1719 (2011)

    Article  Google Scholar 

  16. H. Zhou, G. Zhu, S. Dong, P. Liu, Y. Lu, Z. Zhou, S. Cao, Y. Zhang, H. Pang, Ethanol-induced Ni2+-intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D-printed micro-supercapacitors. Adv. Mater. n/a(n/a), 2211523 (2023)

    Article  Google Scholar 

  17. C.-j. Cui, G.-m. Wu, J. Shen, B. Zhou, Z.-h. Zhang, H.-y. Yang, S.-f. She, Synthesis and electrochemical performance of lithium vanadium oxide nanotubes as cathodes for rechargeable lithium-ion batteries. Electrochim. Acta 55(7), 2536–2541 (2010)

    Article  Google Scholar 

  18. M. Qin, Q. Liang, A. Pan, S. Liang, Q. Zhang, Y. Tang, X. Tan, Template-free synthesis of vanadium oxides nanobelt arrays as high-rate cathode materials for lithium ion batteries. J. Power Sources 268, 700–705 (2014)

    Article  Google Scholar 

  19. D. Chao, X. **a, J. Liu, Z. Fan, C.F. Ng, J. Lin, H. Zhang, Z.X. Shen, H.J. Fan, A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26(33), 5794–5800 (2014)

    Article  Google Scholar 

  20. T. Lv, G. Zhu, S. Dong, Q. Kong, Y. Peng, S. Jiang, G. Zhang, Z. Yang, S. Yang, X. Dong, H. Pang, Y. Zhang, Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62(5), e202216089 (2023)

    Article  Google Scholar 

  21. Q. An, Q. Wei, L. Mai, J. Fei, X. Xu, Y. Zhao, M. Yan, P. Zhang, S. Huang, Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. Phys. Chem. Chem. Phys. 15(39), 16828–16833 (2013)

    Article  Google Scholar 

  22. H. Song, C. Zhang, Y. Liu, C. Liu, X. Nan, G. Cao, Facile synthesis of mesoporous V2O5 nanosheets with superior rate capability and excellent cycling stability for lithium ion batteries. J. Power Sources 294, 1–7 (2015)

    Article  Google Scholar 

  23. Y. Dong, H. Wei, W. Liu, Q. Liu, W. Zhang, Y. Yang, Template-free synthesis of V2O5 hierarchical nanosheet-assembled microspheres with excellent cycling stability. J. Power Sources 285, 538–542 (2015)

    Article  Google Scholar 

  24. X. Rui, J. Zhu, D. Sim, C. Xu, Y. Zeng, H.H. Hng, T.M. Lim, Q. Yan, Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries. Nanoscale 3(11), 4752–4758 (2011)

    Article  Google Scholar 

  25. L. Chen, X. Gu, X. Jiang, N. Wang, J. Yue, H. Xu, J. Yang, Y. Qian, Hierarchical vanadium pentoxide microflowers with excellent long-term cyclability at high rates for lithium ion batteries. J. Power Sources 272, 991–996 (2014)

    Article  Google Scholar 

  26. Z.-F. Li, H. Zhang, Q. Liu, Y. Liu, L. Stanciu, J. **e, Hierarchical nanocomposites of vanadium oxide thin film anchored on graphene as high-performance cathodes in Li-ion batteries. ACS Appl. Mater. Interfaces 6(21), 18894–18900 (2014)

    Article  Google Scholar 

  27. X. Zhou, G. Wu, J. Wu, H. Yang, J. Wang, G. Gao, Carbon black anchored vanadium oxide nanobelts and their post-sintering counterpart (V2O5 nanobelts) as high performance cathode materials for lithium ion batteries. Phys. Chem. Chem. Phys. 16(9), 3973–3982 (2014)

    Article  Google Scholar 

  28. X.W. Zhou, G.M. Wu, G.H. Gao, H.Y. Yang, J.C. Wang, A composite film of V2O5 and multiwall carbon nanotubes as cathode materials for lithium-ion batteries. Key Eng. Mater. 537, 169–173 (2013)

    Article  Google Scholar 

  29. J.C. Wang, G.M. Wu, G.H. Gao, X.W. Zhou, Characterization and electrochemical performances of vanadium oxide films doped with metal ions. Key Eng. Mater. 537, 174–178 (2013)

    Article  Google Scholar 

  30. H.S. Hwang, S.H. Oh, H.S. Kim, W.I. Cho, B.W. Cho, D.Y. Lee, Characterization of Ag-doped vanadium oxide (AgxV2O5) thin film for cathode of thin film battery. Electrochim. Acta 50(2), 485–489 (2004)

    Article  Google Scholar 

  31. M.S. Whittingham, The role of ternary phases in cathode reactions. J. Electrochem. Soc. 123(3), 315 (1976)

    Article  Google Scholar 

  32. D.B. Le, S. Passerini, J. Guo, J. Ressler, B.B. Owens, W.H. Smyrl, High surface area V2O5 aerogel intercalation electrodes. J. Electrochem. Soc. 143(7), 2099 (1996)

    Article  Google Scholar 

  33. N.A. Chernova, M. Roppolo, A.C. Dillon, M.S. Whittingham, Layered vanadium and molybdenum oxides: Batteries and electrochromics. J. Mater. Chem. 19(17), 2526–2552 (2009)

    Article  Google Scholar 

  34. D. Murphy, P. Christian, F. DiSalvo, J. Waszczak, Lithium incorporation by vanadium pentoxide. Inorg. Chem. 18(10), 2800–2803 (1979)

    Article  Google Scholar 

  35. L. Abello, E. Husson, Y. Repelin, G. Lucazeau, Vibrational spectra and valence force field of crystalline V2O5. Spectrochim. Acta A: Mol. Spectrosc. 39(7), 641–651 (1983)

    Article  Google Scholar 

  36. M.S. Whittingham, L.B. Ebert, Applications of intercalation compounds, in Intercalated Layered Materials, (1979), pp. 533–562

    Google Scholar 

  37. Y. Wang, G. Cao, Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 20(12), 2251–2269 (2008)

    Article  Google Scholar 

  38. C. Delmas, H. Cognac-Auradou, J.M. Cocciantelli, M. Ménétrier, J.P. Doumerc, The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation. Solid State Ionics 69(3), 257–264 (1994)

    Article  Google Scholar 

  39. J.M. Cocciantelli, J.P. Doumerc, M. Pouchard, M. Broussely, J. Labat, Crystal chemistry of electrochemically inserted LixV2O5. J. Power Sources 34(2), 103–111 (1991)

    Article  Google Scholar 

  40. D. Yu, C. Chen, S. **e, Y. Liu, K. Park, X. Zhou, Q. Zhang, J. Li, G. Cao, Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning. Energy Environ. Sci. 4(3), 858–861 (2011)

    Article  Google Scholar 

  41. Q. Wang, J. Pan, M. Li, Y. Luo, H. Wu, L. Zhong, G. Li, VO2(B) nanosheets as a cathode material for Li-ion battery. J. Mater. Sci. Technol. 31(6), 630–633 (2015)

    Article  Google Scholar 

  42. W. Wang, B. Jiang, L. Hu, Z. Lin, J. Hou, S. Jiao, Single crystalline VO2 nanosheets: A cathode material for sodium-ion batteries with high rate cycling performance. J. Power Sources 250, 181–187 (2014)

    Article  Google Scholar 

  43. X. Rui, Z. Lu, H. Yu, D. Yang, H.H. Hng, T.M. Lim, Q. Yan, Ultrathin V2O5 nanosheet cathodes: Realizing ultrafast reversible lithium storage. Nanoscale 5(2), 556–560 (2013)

    Article  Google Scholar 

  44. A.Q. Pan, H.B. Wu, L. Zhang, X.W. Lou, Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 6(5), 1476–1479 (2013)

    Article  Google Scholar 

  45. S. Wang, S. Li, Y. Sun, X. Feng, C. Chen, Three-dimensional porous V2O5 cathode with ultra high rate capability. Energy Environ. Sci. 4(8), 2854–2857 (2011)

    Article  Google Scholar 

  46. S. Zhang, Y. Li, C. Wu, F. Zheng, Y. **e, Novel flowerlike metastable vanadium dioxide (B) micronanostructures: Facile synthesis and application in aqueous lithium ion batteries. J. Phys. Chem. C 113(33), 15058–15067 (2009)

    Article  Google Scholar 

  47. C. Nethravathi, C.R. Rajamathi, M. Rajamathi, U.K. Gautam, X. Wang, D. Golberg, Y. Bando, N-doped graphene–VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery. ACS Appl. Mater. Interfaces 5(7), 2708–2714 (2013)

    Article  Google Scholar 

  48. M. Liu, B. Su, Y. Tang, X. Jiang, A. Yu, Recent advances in nanostructured vanadium oxides and composites for energy conversion. Adv. Energy Mater. 7(23), 1700885 (2017)

    Article  Google Scholar 

  49. L. Mai, Q. Wei, Q. An, X. Tian, Y. Zhao, X. Xu, L. Xu, L. Chang, Q. Zhang, Nanoscroll buffered hybrid nanostructural VO2(B) cathodes for high-rate and long-life lithium storage. Adv. Mater. 25(21), 2969–2973 (2013)

    Article  Google Scholar 

  50. L. Noerochim, J.-Z. Wang, D. Wexler, M.M. Rahman, J. Chen, H.-K. Liu, Impact of mechanical bending on the electrochemical performance of bendable lithium batteries with paper-like free-standing V2O5–polypyrrole cathodes. J. Mater. Chem. 22(22), 11159–11165 (2012)

    Article  Google Scholar 

  51. L. Mai, F. Dong, X. Xu, Y. Luo, Q. An, Y. Zhao, J. Pan, J. Yang, Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene)&MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett. 13(2), 740–745 (2013)

    Article  Google Scholar 

  52. A. Odani, V.G. Pol, S.V. Pol, M. Koltypin, A. Gedanken, D. Aurbach, Testing carbon-coated VOx prepared via reaction under autogenic pressure at elevated temperature as Li-insertion materials. Adv. Mater. 18(11), 1431–1436 (2006)

    Article  Google Scholar 

  53. X.-F. Zhang, K.-X. Wang, X. Wei, J.-S. Chen, Carbon-coated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 23(24), 5290–5292 (2011)

    Article  Google Scholar 

  54. X. Jia, Z. Chen, A. Suwarnasarn, L. Rice, X. Wang, H. Sohn, Q. Zhang, B.M. Wu, F. Wei, Y. Lu, High-performance flexible lithium-ion electrodes based on robust network architecture. Energy Environ. Sci. 5(5), 6845–6849 (2012)

    Article  Google Scholar 

  55. X. Wang, Y. Huang, D. Jia, W.K. Pang, Z. Guo, Y. Du, X. Tang, Y. Cao, Self-assembled sandwich-like vanadium oxide/graphene mesoporous composite as high-capacity anode material for lithium ion batteries. Inorg. Chem. 54(24), 11799–11806 (2015)

    Article  Google Scholar 

  56. Y. Yang, L. Li, H. Fei, Z. Peng, G. Ruan, J.M. Tour, Graphene nanoribbon/V2O5 cathodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 6(12), 9590–9594 (2014)

    Article  Google Scholar 

  57. J. Cheng, B. Wang, H.L. **n, G. Yang, H. Cai, F. Nie, H. Huang, Self-assembled V2O5 nanosheets/reduced graphene oxide hierarchical nanocomposite as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A 1(36), 10814–10820 (2013)

    Article  Google Scholar 

  58. G.H. Newman, L.P. Klemann, Ambient temperature cycling of an Na-TiS2 cell. J. Electrochem. Soc. 127(10), 2097 (1980)

    Article  Google Scholar 

  59. R.C. Massé, E. Uchaker, G. Cao, Beyond Li-ion: Electrode materials for sodium- and magnesium-ion batteries. Sci. China Mater. 58(9), 715–766 (2015)

    Article  Google Scholar 

  60. Q. Wang, J. Xu, W. Zhang, M. Mao, Z. Wei, L. Wang, C. Cui, Y. Zhu, J. Ma, Research progress on vanadium-based cathode materials for sodium ion batteries. J. Mater. Chem. A 6(19), 8815–8838 (2018)

    Article  Google Scholar 

  61. V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012)

    Article  Google Scholar 

  62. K. West, B. Zachau-Christiansen, T. Jacobsen, S. Skaarup, Sodium insertion in vanadium oxides. Solid State Ionics 28-30, 1128–1131 (1988)

    Article  Google Scholar 

  63. L. Su, J. Winnick, P. Kohl, Sodium insertion into vanadium pentoxide in methanesulfonyl chloride–aluminum chloride ionic liquid. J. Power Sources 101(2), 226–230 (2001)

    Article  Google Scholar 

  64. N. Van Nghia, P.D. Long, T.A. Tan, S. Jafian, I.M. Hung, Electrochemical performance of a V2O5 cathode for a sodium ion battery. J. Electron. Mater. 46(6), 3689–3694 (2017)

    Article  Google Scholar 

  65. H.-Y. Li, C.-H. Yang, C.-M. Tseng, S.-W. Lee, C.-C. Yang, T.-Y. Wu, J.-K. Chang, Electrochemically grown nanocrystalline V2O5 as high-performance cathode for sodium-ion batteries. J. Power Sources 285, 418–424 (2015)

    Article  Google Scholar 

  66. V. Raju, J. Rains, C. Gates, W. Luo, X. Wang, W.F. Stickle, G.D. Stucky, X. Ji, Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 14(7), 4119–4124 (2014)

    Article  Google Scholar 

  67. D.W. Su, S.X. Dou, G.X. Wang, Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries. J. Mater. Chem. A 2(29), 11185–11194 (2014)

    Article  Google Scholar 

  68. D. Su, G. Wang, Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7(12), 11218–11226 (2013)

    Article  Google Scholar 

  69. J. Yao, Y. Li, R.C. Massé, E. Uchaker, G. Cao, Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Mater. 11, 205–259 (2018)

    Article  Google Scholar 

  70. K. Zhu, C. Zhang, S. Guo, H. Yu, K. Liao, G. Chen, Y. Wei, H. Zhou, Sponge-like cathode material self-assembled from two-dimensional V2O5 nanosheets for sodium-ion batteries. ChemElectroChem 2(11), 1660–1664 (2015)

    Article  Google Scholar 

  71. S. Tepavcevic, H. **ong, V.R. Stamenkovic, X. Zuo, M. Balasubramanian, V.B. Prakapenka, C.S. Johnson, T. Rajh, Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. ACS Nano 6(1), 530–538 (2012)

    Article  Google Scholar 

  72. Q. Wei, J. Liu, W. Feng, J. Sheng, X. Tian, L. He, Q. An, L. Mai, Hydrated vanadium pentoxide with superior sodium storage capacity. J. Mater. Chem. A 3(15), 8070–8075 (2015)

    Article  Google Scholar 

  73. V. Petkov, P.N. Trikalitis, E.S. Bozin, S.J.L. Billinge, T. Vogt, M.G. Kanatzidis, Structure of V2O5·nH2O xerogel solved by the atomic pair distribution function technique. J. Am. Chem. Soc. 124(34), 10157–10162 (2002)

    Article  Google Scholar 

  74. S. Li, X. Li, Y. Li, B. Yan, X. Song, D. Li, Superior sodium storage of vanadium pentoxide cathode with controllable interlamellar spacing. Electrochim. Acta 244, 77–85 (2017)

    Article  Google Scholar 

  75. D. McNulty, D.N. Buckley, C. O’Dwyer, Synthesis and electrochemical properties of vanadium oxide materials and structures as Li-ion battery positive electrodes. J. Power Sources 267, 831–873 (2014)

    Article  Google Scholar 

  76. H. He, G. **, H. Wang, X. Huang, Z. Chen, D. Sun, Y. Tang, Annealed NaV3O8 nanowires with good cycling stability as a novel cathode for Na-ion batteries. J. Mater. Chem. A 2(10), 3563–3570 (2014)

    Article  Google Scholar 

  77. E. Uchaker, Y.Z. Zheng, S. Li, S.L. Candelaria, S. Hu, G.Z. Cao, Better than crystalline: Amorphous vanadium oxide for sodium-ion batteries. J. Mater. Chem. A 2(43), 18208–18214 (2014)

    Article  Google Scholar 

  78. C. Ling, D. Banerjee, M. Matsui, Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology. Electrochim. Acta 76, 270–274 (2012)

    Article  Google Scholar 

  79. M. Matsui, Study on electrochemically deposited Mg metal. J. Power Sources 196(16), 7048–7055 (2011)

    Article  Google Scholar 

  80. D. Aurbach, A. Schechter, M. Moshkovich, Y. Cohen, On the mechanisms of reversible magnesium deposition processes. J. Electrochem. Soc. 148(9), A1004 (2001)

    Article  Google Scholar 

  81. M.M. Huie, D.C. Bock, E.S. Takeuchi, A.C. Marschilok, K.J. Takeuchi, Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 287, 15–27 (2015)

    Article  Google Scholar 

  82. T.D. Gregory, R.J. Hoffman, R.C. Winterton, Nonaqueous electrochemistry of magnesium: Applications to energy storage. J. Electrochem. Soc. 137(3), 775 (1990)

    Article  Google Scholar 

  83. H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 6(8), 2265–2279 (2013)

    Article  Google Scholar 

  84. D. Aurbach, G.S. Suresh, E. Levi, A. Mitelman, O. Mizrahi, O. Chusid, M. Brunelli, Progress in rechargeable magnesium battery technology. Adv. Mater. 19(23), 4260–4267 (2007)

    Article  Google Scholar 

  85. D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Prototype systems for rechargeable magnesium batteries. Nature 407(6805), 724–727 (2000)

    Article  Google Scholar 

  86. G.G. Amatucci, F. Badway, A. Singhal, B. Beaudoin, G. Skandan, T. Bowmer, I. Plitz, N. Pereira, T. Chapman, R. Jaworski, Investigation of yttrium and polyvalent ion intercalation into nanocrystalline vanadium oxide. J. Electrochem. Soc. 148(8), A940 (2001)

    Article  Google Scholar 

  87. X. Du, G. Huang, Y. Qin, L. Wang, Solvothermal synthesis of GO/V2O5 composites as a cathode material for rechargeable magnesium batteries. RSC Adv. 5(93), 76352–76355 (2015)

    Article  Google Scholar 

  88. P. Novák, J. Desilvestro, Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes. J. Electrochem. Soc. 140(1), 140 (1993)

    Article  Google Scholar 

  89. Q. An, Y. Li, H. Deog Yoo, S. Chen, Q. Ru, L. Mai, Y. Yao, Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes. Nano Energy 18, 265–272 (2015)

    Article  Google Scholar 

  90. X. Chen, L. Wang, H. Li, F. Cheng, J. Chen, Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J. Energy Chem. 38, 20–25 (2019)

    Article  Google Scholar 

  91. Y. Li, Z. Huang, P.K. Kalambate, Y. Zhong, Z. Huang, M. **e, Y. Shen, Y. Huang, V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 60, 752–759 (2019)

    Article  Google Scholar 

  92. H. Qin, L. Chen, L. Wang, X. Chen, Z. Yang, V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim. Acta 306, 307–316 (2019)

    Article  Google Scholar 

  93. R.D. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25(5), 925–946 (1969)

    Article  Google Scholar 

  94. A.A. Yaroshevsky, Abundances of chemical elements in the Earth’s crust. Geochem. Int. 44(1), 48–55 (2006)

    Article  Google Scholar 

  95. M. Hayashi, H. Arai, H. Ohtsuka, Y. Sakurai, Electrochemical characteristics of calcium in organic electrolyte solutions and vanadium oxides as calcium hosts. J. Power Sources 119–121, 617–620 (2003)

    Article  Google Scholar 

  96. G.S. Gautam, P. Canepa, R. Malik, M. Liu, K. Persson, G. Ceder, First-principles evaluation of multi-valent cation insertion into orthorhombic V2O5. Chem. Commun. 51(71), 13619–13622 (2015)

    Article  Google Scholar 

  97. D. Wang, H. Liu, J.D. Elliott, L.-M. Liu, W.-M. Lau, Robust vanadium pentoxide electrodes for sodium and calcium ion batteries: Thermodynamic and diffusion mechanical insights. J. Mater. Chem. A 4(32), 12516–12525 (2016)

    Article  Google Scholar 

  98. M. Bervas, L.C. Klein, G.G. Amatucci, Vanadium oxide–propylene carbonate composite as a host for the intercalation of polyvalent cations. Solid State Ionics 176(37), 2735–2747 (2005)

    Article  Google Scholar 

  99. N. Jayaprakash, S.K. Das, L.A. Archer, The rechargeable aluminum-ion battery. Chem. Commun. 47(47), 12610–12612 (2011)

    Article  Google Scholar 

  100. S. Gu, H. Wang, C. Wu, Y. Bai, H. Li, F. Wu, Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 6, 9–17 (2017)

    Article  Google Scholar 

  101. S. Passerini, D. Ba Le, W.H. Smyrl, M. Berrettoni, R. Tossici, R. Marassi, M. Giorgetti, XAS and electrochemical characterization of lithiated high surface area V2O5 aerogels. Solid State Ionics 104(3), 195–204 (1997)

    Article  Google Scholar 

  102. L.W. Wangoh, Y. Huang, R.L. Jezorek, A.B. Kehoe, G.W. Watson, F. Omenya, N.F. Quackenbush, N.A. Chernova, M.S. Whittingham, L.F.J. Piper, Correlating lithium hydroxyl accumulation with capacity retention in V2O5 aerogel cathodes. ACS Appl. Mater. Interfaces 8(18), 11532–11538 (2016)

    Article  Google Scholar 

  103. Y. Wang, K. Takahashi, K.H. Lee, G.Z. Cao, Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv. Funct. Mater. 16(9), 1133–1144 (2006)

    Article  Google Scholar 

  104. V. Augustyn, B. Dunn, Low-potential lithium-ion reactivity of vanadium oxide aerogels. Electrochim. Acta 88, 530–535 (2013)

    Article  Google Scholar 

  105. J.W. Lee, S.Y. Lim, H.M. Jeong, T.H. Hwang, J.K. Kang, J.W. Choi, Extremely stable cycling of ultra-thin V2O5 nanowire–graphene electrodes for lithium rechargeable battery cathodes. Energy Environ. Sci. 5(12), 9889–9894 (2012)

    Article  Google Scholar 

  106. M. Sathiya, A.S. Prakash, K. Ramesha, J.M. Tarascon, A.K. Shukla, V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J. Am. Chem. Soc. 133(40), 16291–16299 (2011)

    Article  Google Scholar 

  107. Q. Liu, Z.-F. Li, Y. Liu, H. Zhang, Y. Ren, C.-J. Sun, W. Lu, Y. Zhou, L. Stanciu, E.A. Stach, J. **e, Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Nat. Commun. 6(1), 6127 (2015)

    Article  Google Scholar 

  108. M. Clites, E. Pomerantseva, Bilayered vanadium oxides by chemical pre-intercalation of alkali and alkali-earth ions as battery electrodes. Energy Storage Mater. 11, 30–37 (2018)

    Article  Google Scholar 

  109. A. Moretti, F. Maroni, I. Osada, F. Nobili, S. Passerini, V2O5 aerogel as a versatile cathode material for lithium and sodium batteries. ChemElectroChem 2(4), 529–537 (2015)

    Article  Google Scholar 

  110. S. Li, X. Li, Y. Li, B. Yan, X. Song, L. Fan, H. Shan, D. Li, Design of V2O5·xH2O cathode for highly enhancing sodium storage. J. Alloys Compd. 722, 278–286 (2017)

    Article  Google Scholar 

  111. S. Tepavcevic, Y. Liu, D. Zhou, B. Lai, J. Maser, X. Zuo, H. Chan, P. Král, C.S. Johnson, V. Stamenkovic, N.M. Markovic, T. Rajh, Nanostructured layered cathode for rechargeable Mg-ion batteries. ACS Nano 9(8), 8194–8205 (2015)

    Article  Google Scholar 

  112. J. Yao, T. Sun, J. Ji, Y. Sun, S. **ao, Y. Li, Preparation and sodium storage performance of V2O5·nH2O/graphene composites. Ionics 25(12), 5869–5879 (2019)

    Article  Google Scholar 

  113. A.S. Etman, J. Sun, R. Younesi, V2O5·nH2O nanosheets and multi-walled carbon nanotube composite as a negative electrode for sodium-ion batteries. J. Energy Chem. 30, 145–151 (2019)

    Article  Google Scholar 

  114. E. Brown, J. Acharya, A. Elangovan, G.P. Pandey, J. Wu, J. Li, Disordered bilayered V2O5·nH2O shells deposited on vertically aligned carbon nanofiber arrays as stable high-capacity sodium ion battery cathodes. Energ. Technol. 6(12), 2438–2449 (2018)

    Article  Google Scholar 

  115. D.B. Le, S. Passerini, F. Coustier, J. Guo, T. Soderstrom, B.B. Owens, W.H. Smyrl, Intercalation of polyvalent cations into V2O5 aerogels. Chem. Mater. 10(3), 682–684 (1998)

    Article  Google Scholar 

  116. D. Imamura, M. Miyayama, M. Hibino, T. Kudo, Mg intercalation properties into V2O5 gel/carbon composites under high-rate condition. J. Electrochem. Soc. 150(6), A753 (2003)

    Article  Google Scholar 

  117. S. Tepavcevic, J.G. Connell, P.P. Lopes, M. Bachhav, B. Key, C. Valero-Vidal, E.J. Crumlin, V.R. Stamenkovic, N.M. Markovic, Role of structural hydroxyl groups in enhancing performance of electrochemically-synthesized bilayer V2O5. Nano Energy 53, 449–457 (2018)

    Article  Google Scholar 

  118. N. Sa, T.L. Kinnibrugh, H. Wang, G. Sai Gautam, K.W. Chapman, J.T. Vaughey, B. Key, T.T. Fister, J.W. Freeland, D.L. Proffit, P.J. Chupas, G. Ceder, J.G. Bareno, I.D. Bloom, A.K. Burrell, Structural evolution of reversible Mg insertion into a bilayer structure of V2O5·nH2O xerogel material. Chem. Mater. 28(9), 2962–2969 (2016)

    Article  Google Scholar 

  119. G. Sai Gautam, P. Canepa, W.D. Richards, R. Malik, G. Ceder, Role of structural H2O in intercalation electrodes: The case of Mg in nanocrystalline xerogel-V2O5. Nano Lett. 16(4), 2426–2431 (2016)

    Article  Google Scholar 

  120. M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K.T. Mueller, L. Mai, J. Liu, J. Yang, Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30(1), 1703725 (2018)

    Article  Google Scholar 

  121. T. Wei, Q. Li, G. Yang, C. Wang, An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. J. Mater. Chem. A 6(17), 8006–8012 (2018)

    Article  Google Scholar 

  122. K.-F. Zhang, S.-J. Bao, X. Liu, J. Shi, Z.-X. Su, H.-L. Li, Hydrothermal synthesis of single-crystal VO2(B) nanobelts. Mater. Res. Bull. 41(11), 1985–1989 (2006)

    Article  Google Scholar 

  123. K. Wilhelmi, K. Waltersson, L. Kihlborg, A refinement of the crystal structure of V6O13. Acta Chem. Scand. 25(7), 2675 (1971)

    Article  Google Scholar 

  124. G. Grymonprez, L. Fiermans, J. Venink, Structural properties of vanadium oxides. Acta Crystallogr. Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 33(5), 834–837 (1977)

    Article  Google Scholar 

  125. W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science 295(5564), 2425–2427 (2002)

    Article  Google Scholar 

  126. N. Li, W. Huang, Q. Shi, Y. Zhang, L. Song, A CTAB-assisted hydrothermal synthesis of VO2(B) nanostructures for lithium-ion battery application. Ceram. Int. 39(6), 6199–6206 (2013)

    Article  Google Scholar 

  127. G. He, L. Li, A. Manthiram, VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries. J. Mater. Chem. A 3(28), 14750–14758 (2015)

    Article  Google Scholar 

  128. F. Sediri, N. Gharbi, Controlled hydrothermal synthesis of VO2(B) nanobelts. Mater. Lett. 63(1), 15–18 (2009)

    Article  Google Scholar 

  129. M. Lübke, N. Ding, M.J. Powell, D.J.L. Brett, P.R. Shearing, Z. Liu, J.A. Darr, VO2 nano-sheet negative electrodes for lithium-ion batteries. Electrochem. Commun. 64, 56–60 (2016)

    Article  Google Scholar 

  130. C. Niu, J. Meng, C. Han, K. Zhao, M. Yan, L. Mai, VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 14(5), 2873–2878 (2014)

    Article  Google Scholar 

  131. J. Ni, W. Jiang, K. Yu, Y. Gao, Z. Zhu, Hydrothermal synthesis of VO2(B) nanostructures and application in aqueous Li-ion battery. Electrochim. Acta 56(5), 2122–2126 (2011)

    Article  Google Scholar 

  132. C. Pei, F. **ong, J. Sheng, Y. Yin, S. Tan, D. Wang, C. Han, Q. An, L. Mai, VO2 nanoflakes as the cathode material of hybrid magnesium–lithium-ion batteries with high energy density. ACS Appl. Mater. Interfaces 9(20), 17060–17066 (2017)

    Article  Google Scholar 

  133. C.V. Subba Reddy, E.H. Walker, S.A. Wicker, Q.L. Williams, R.R. Kalluru, Synthesis of VO2(B) nanorods for Li battery application. Curr. Appl. Phys. 9(6), 1195–1198 (2009)

    Article  Google Scholar 

  134. P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5(7), 567–573 (2006)

    Article  Google Scholar 

  135. C. Tsang, A. Manthiram, Synthesis of nanocrystalline VO2 and its electrochemical behavior in lithium batteries. J. Electrochem. Soc. 144(2), 520 (1997)

    Article  Google Scholar 

  136. M.-S. Balogun, Y. Luo, F. Lyu, F. Wang, H. Yang, H. Li, C. Liang, M. Huang, Y. Huang, Y. Tong, Carbon quantum dot surface-engineered VO2 interwoven nanowires: A flexible cathode material for lithium and sodium ion batteries. ACS Appl. Mater. Interfaces 8(15), 9733–9744 (2016)

    Article  Google Scholar 

  137. F. Wu, Y. Jiang, Z. Ye, Y. Huang, Z. Wang, S. Li, Y. Mei, M. **e, L. Li, R. Chen, A 3D flower-like VO2/MXene hybrid architecture with superior anode performance for sodium ion batteries. J. Mater. Chem. A 7(3), 1315–1322 (2019)

    Article  Google Scholar 

  138. T. Luo, Y. Liu, H. Su, R. **ao, L. Huang, Q. **ang, Y. Zhou, C. Chen, Nanostructured-VO2(B): A high-capacity magnesium-ion cathode and its electrochemical reaction mechanism. Electrochim. Acta 260, 805–813 (2018)

    Article  Google Scholar 

  139. Z. Zou, H. Cheng, J. He, F. Long, Y. Wu, Z. Yan, H. Chen, V6O13 nanosheets synthesized from ethanol-aqueous solutions as high energy cathode material for lithium-ion batteries. Electrochim. Acta 135, 175–180 (2014)

    Article  Google Scholar 

  140. G.R. Mutta, S.R. Popuri, P. Ruterana, J. Buckman, Single step hydrothermal synthesis of mixed valent V6O13 nano-architectures: A case study of the possible applications in electrochemical energy conversion. J. Alloys Compd. 706, 562–567 (2017)

    Article  Google Scholar 

  141. J. He, W. Wang, Z. Zou, F. Long, Z. Fu, Solvothermal synthesis and electrochemical performance of Ag-doped V6O13 as cathode material for lithium-ion battery. Ionics 20(8), 1063–1070 (2014)

    Article  Google Scholar 

  142. W. Meng, R. Pigliapochi, P.M. Bayley, O. Pecher, M.W. Gaultois, I.D. Seymour, H.-P. Liang, W. Xu, K.M. Wiaderek, K.W. Chapman, C.P. Grey, Unraveling the complex delithiation and lithiation mechanisms of the high capacity cathode material V6O13. Chem. Mater. 29(13), 5513–5524 (2017)

    Article  Google Scholar 

  143. M.B. Sahana, S.A. Shivashankar, Metalorganic chemical vapor deposition of highly oriented thin film composites of V2O5 and V6O13: Suppression of the metal–semiconductor transition in V6O13. J. Mater. Res. 19(10), 2859–2870 (2004)

    Article  Google Scholar 

  144. M. Menetrier, A. Levasseur, C. Delmas, Utilization of V6O13 as the positive electrode in lithium batteries. Mater. Sci. Eng. B 3(1), 103–107 (1989)

    Article  Google Scholar 

  145. J. Barker, R. Koksbang, Temperature dependency of the discharge and charge characteristics of electrochemical lithium insertion in V6O13. Solid State Ionics 78(1), 161–167 (1995)

    Article  Google Scholar 

  146. E.J. Frazer, S. Phang, Galvanostatic cycling of vanadium oxide (V6O13) in a nonaqueous secondary lithium cell. J. Power Sources 10(1), 33–41 (1983)

    Article  Google Scholar 

  147. A. Gorenstein, A. Khelfa, J.P. Guesdon, C. Julien, Effect of the crystallinity of V6O13 films on the electrochemical behavior of lithium microbatteries. MRS Online Proc. Libr. (OPL) 369, 649 (1994)

    Article  Google Scholar 

  148. K. West, B. Zachau-Christiansen, T. Jacobsen, S. Atlung, V6O13 as cathode material for lithium cells. J. Power Sources 14(1), 235–245 (1985)

    Article  Google Scholar 

  149. M.Y. Saidi, J. Barker, Composite cathode formulation effects on the discharge characteristics of lithium rechargeable cells based on V6O13. Solid State Ionics 78(1), 169–173 (1995)

    Article  Google Scholar 

  150. Y. Li, P.S. Fedkiw, S.A. Khan, Lithium/V6O13 cells using silica nanoparticle-based composite electrolyte. Electrochim. Acta 47(24), 3853–3861 (2002)

    Article  Google Scholar 

  151. Y.-L. Ding, Y. Wen, C. Wu, P.A. van Aken, J. Maier, Y. Yu, 3D V6O13 nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. Nano Lett. 15(2), 1388–1394 (2015)

    Article  Google Scholar 

  152. Z. Wu, W. Qiu, Y. Chen, Y. Luo, Y. Huang, Q. Lei, S. Guo, P. Liu, M.-S. Balogun, Y. Tong, Etched current collector-guided creation of wrinkles in steel-mesh-supported V6O13 cathode for lithium-ion batteries. J. Mater. Chem. A 5(2), 756–764 (2017)

    Article  Google Scholar 

  153. X. Tian, X. Xu, L. He, Q. Wei, M. Yan, L. Xu, Y. Zhao, C. Yang, L. Mai, Ultrathin pre-lithiated V6O13 nanosheet cathodes with enhanced electrical transport and cyclability. J. Power Sources 255, 235–241 (2014)

    Article  Google Scholar 

  154. Y. Sun, S. Jiang, W. Bi, C. Wu, Y. **e, Highly ordered lamellar V2O3-based hybrid nanorods towards superior aqueous lithium-ion battery performance. J. Power Sources 196(20), 8644–8650 (2011)

    Article  Google Scholar 

  155. C. Han, F. Liu, J. Liu, Q. Li, J. Meng, B. Shao, Q. He, X. Wang, Z. Liu, L. Mai, Facile template-free synthesis of uniform carbon-confined V2O3 hollow spheres for stable and fast lithium storage. J. Mater. Chem. A 6(15), 6220–6224 (2018)

    Article  Google Scholar 

  156. X. An, H. Yang, Y. Wang, Y. Tang, S. Liang, A. Pan, G. Cao, Hydrothermal synthesis of coherent porous V2O3/carbon nanocomposites for high-performance lithium-and sodium-ion batteries. Sci. China Mater. 8(60), 717–727 (2017)

    Article  Google Scholar 

  157. Z. Li, G. Liu, M. Guo, L.-X. Ding, S. Wang, H. Wang, Electrospun porous vanadium pentoxide nanotubes as a high-performance cathode material for lithium-ion batteries. Electrochim. Acta 173, 131–138 (2015)

    Article  Google Scholar 

  158. B. **ao, B. Zhang, L.-b. Tang, C.-s. An, Z.-j. He, H. Tong, W.-j. Yu, J.-c. Zheng, V2O3/rGO composite as a potential anode material for lithium ion batteries. Ceram. Int. 44(13), 15044–15049 (2018)

    Article  Google Scholar 

  159. H. Jiang, G. Jia, Y. Hu, Q. Cheng, Y. Fu, C. Li, Ultrafine V2O3 nanowire embedded in carbon hybrids with enhanced lithium storage capability. Ind. Eng. Chem. Res. 54(11), 2960–2965 (2015)

    Article  Google Scholar 

  160. Y. Wang, H.J. Zhang, A.S. Admar, J. Luo, C.C. Wong, A. Borgna, J. Lin, Improved cyclability of lithium-ion battery anode using encapsulated V2O3 nanostructures in well-graphitized carbon fiber. RSC Adv. 2(13), 5748–5753 (2012)

    Article  Google Scholar 

  161. C. Huan, X. Zhao, X. **ao, Y. Lu, S. Qi, Y. Zhan, L. Zhang, G. Xu, One-step solvothermal synthesis of V2O3@C nanoparticles as anode materials for lithium-ion battery. J. Alloys Compd. 776, 568–574 (2019)

    Article  Google Scholar 

  162. X. Li, J. Fu, Z. Pan, J. Su, J. Xu, B. Gao, X. Peng, L. Wang, X. Zhang, P.K. Chu, Peapod-like V2O3 nanorods encapsulated into carbon as binder-free and flexible electrodes in lithium-ion batteries. J. Power Sources 331, 58–66 (2016)

    Article  Google Scholar 

  163. H.-E. Wang, X. Zhao, K. Yin, Y. Li, L. Chen, X. Yang, W. Zhang, B.-L. Su, G. Cao, Superior pseudocapacitive lithium-ion storage in porous vanadium oxides@C heterostructure composite. ACS Appl. Mater. Interfaces 9(50), 43665–43673 (2017)

    Article  Google Scholar 

  164. J. Wang, Z. Liu, W. Yang, L. Han, M. Wei, A one-step synthesis of porous V2O3@C hollow spheres as a high-performance anode for lithium-ion batteries. Chem. Commun. 54(53), 7346–7349 (2018)

    Article  Google Scholar 

  165. D. Zhang, G. Li, B. Li, J. Fan, X. Liu, D. Chen, L. Li, A facile strategy to fabricate V2O3/Porous N-doped carbon nanosheet framework as high-performance anode for lithium-ion batteries. J. Alloys Compd. 789, 288–294 (2019)

    Article  Google Scholar 

  166. C. Niu, M. Huang, P. Wang, J. Meng, X. Liu, X. Wang, K. Zhao, Y. Yu, Y. Wu, C. Lin, L. Mai, Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Res. 9(1), 128–138 (2016)

    Article  Google Scholar 

  167. X. **a, D. Chao, Y. Zhang, J. Zhan, Y. Zhong, X. Wang, Y. Wang, Z.X. Shen, J. Tu, H.J. Fan, Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 12(22), 3048–3058 (2016)

    Article  Google Scholar 

  168. F. Theobald, R. Cabala, HYDRATE V3O7·H2O. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sci-ences Serie C 270(26), 2138 (1970)

    Google Scholar 

  169. Y. Oka, T. Yao, N. Yamamoto, Structure determination of H2V3O8 by powder X-ray diffraction. J. Solid State Chem. 89(2), 372–377 (1990)

    Article  Google Scholar 

  170. Y. Wu, X. Xu, C. Zhu, P. Liu, S. Yang, H.L. **n, R. Cai, L. Yao, M. Nie, S. Lei, P. Gao, L. Sun, L. Mai, F. Xu, In situ visualization of structural evolution and fissure breathing in (De)lithiated H2V3O8 nanorods. ACS Energy Lett. 4(9), 2081–2090 (2019)

    Article  Google Scholar 

  171. K. Zhu, X. Yan, Y. Zhang, Y. Wang, A. Su, X. Bie, D. Zhang, F. Du, C. Wang, G. Chen, Y. Wei, Synthesis of H2V3O8/reduced graphene oxide composite as a promising cathode material for lithium-ion batteries. ChemPlusChem 79(3), 447–453 (2014)

    Article  Google Scholar 

  172. C. Zhang, H. Song, C. Zhang, C. Liu, Y. Liu, G. Cao, Interface reduction synthesis of H2V3O8 nanobelts–graphene for high-rate Li-ion batteries. J. Phys. Chem. C 119(21), 11391–11399 (2015)

    Article  Google Scholar 

  173. Z. Liu, R. Xu, W. Wei, P. **g, X. Li, Q. Zhu, H. Sun, Y. Dong, G.S. Zakharova, Flexible H2V3O8 nanobelts/reduced graphene oxide electrodes with high mass loading for lithium ion batteries. Solid State Ionics 329, 74–81 (2019)

    Article  Google Scholar 

  174. X. Xu, M. Yan, X. Tian, C. Yang, M. Shi, Q. Wei, L. Xu, L. Mai, In situ investigation of Li and Na ion transport with single nanowire electrochemical devices. Nano Lett. 15(6), 3879–3884 (2015)

    Article  Google Scholar 

  175. D. Wang, Q. Wei, J. Sheng, P. Hu, M. Yan, R. Sun, X. Xu, Q. An, L. Mai, Flexible additive free H2V3O8 nanowire membrane as cathode for sodium ion batteries. Phys. Chem. Chem. Phys. 18(17), 12074–12079 (2016)

    Article  Google Scholar 

  176. M. Rastgoo-Deylami, J.W. Heo, S.-T. Hong, High potassium storage capability of H2V3O8 in a non-aqueous electrolyte. ChemistrySelect 4(40), 11711–11717 (2019)

    Article  Google Scholar 

  177. H. Tang, N. Xu, C. Pei, F. **ong, S. Tan, W. Luo, Q. An, L. Mai, H2V3O8 nanowires as high-capacity cathode materials for magnesium-based battery. ACS Appl. Mater. Interfaces 9(34), 28667–28673 (2017)

    Article  Google Scholar 

  178. M. Rastgoo-Deylami, M.S. Chae, S.-T. Hong, H2V3O8 as a high energy cathode material for nonaqueous magnesium-ion batteries. Chem. Mater. 30(21), 7464–7472 (2018)

    Article  Google Scholar 

  179. P. He, Y. Quan, X. Xu, M. Yan, W. Yang, Q. An, L. He, L. Mai, High-performance aqueous zinc–ion battery based on layered H2V3O8 nanowire cathode. Small 13(47), 1702551 (2017)

    Article  Google Scholar 

  180. Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang, P.M. Voyles, G. Chen, Y. Wei, X. Wang, H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8(19), 1800144 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mai, L., Xu, L., Chen, W. (2023). Vanadium Oxide Nanomaterials for Electrochemical Energy Storage. In: Vanadium-Based Nanomaterials for Electrochemical Energy Storage. Springer, Cham. https://doi.org/10.1007/978-3-031-44796-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44796-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44795-2

  • Online ISBN: 978-3-031-44796-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation