Improved Jaya Algorithm with Inertia Weight Factor

  • Chapter
  • First Online:
Women in Soft Computing

Part of the book series: Women in Engineering and Science ((WES))

  • 70 Accesses

Abstract

The newly established Jaya algorithm has a simple structure and just requires a small set of control parameters to be optimized. Though it has scope of improvement in terms of outcome accuracy with a fast convergence speed, intensification (exploitation), and diversification (exploration). This work suggests an enhanced variant of the Jaya algorithm, named “W-Jaya,” by setting up a time-varying inertia weight factor with it. This method offers high-quality solutions in a reasonable timeframe. Further, W-Jaya tested with 10 constrained and 20 unconstrained test problems taken from the literature. Finally, the comparison and results show that the proposed W-Jaya has obtained desire goals successfully in an effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Talbi, E.-G. (2009). Metaheuristics: From design to implementation. Wiley.

    Book  Google Scholar 

  2. Koutitas, G., & Kaveh, A. (2016). Advances in metaheuristic algorithms for optimal design of structures (2nd ed.). Springer Nature.

    Google Scholar 

  3. Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  MathSciNet  Google Scholar 

  4. Passino, K. M. (2012). Bacterial foraging optimization. International Journal of Swarm Intelligence Research, 1(1), 1–16.

    Article  MathSciNet  Google Scholar 

  5. Wright, A. H. (1991). Genetic algorithms for real parameter optimization. In Foundations of genetic algorithms (Vol. 1, pp. 205–218). Elsevier.

    Google Scholar 

  6. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61.

    Article  Google Scholar 

  7. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings, IEEE international conference on neural networks, 1995 (pp. 1942–1948).

    Google Scholar 

  8. Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. Computational Intelligence Magazine, IEEE, 1, 28–39.

    Article  Google Scholar 

  9. Yang, X. S., & He, X. (2013). Firefly algorithm: recent advances and applications. International Journal of Swarm Intelligence, 1(1), 36.

    Article  Google Scholar 

  10. Eusuff, M., Lansey, K., & Pasha, F. (2006). Shuffled frog-lea** algorithm: A memetic meta-heuristic for discrete optimization. Engineering Optimization, 38(2), 129–154.

    Article  MathSciNet  Google Scholar 

  11. Karaboga, D., & Basturk, B. (2007). Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems (LNAI 4529) (pp. 789–798). Springer.

    Google Scholar 

  12. Simon, D., & Member, S. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702–713.

    Article  Google Scholar 

  13. **e, L., Zeng, J., & Cui, Z. (2009). General framework of artificial physics optimization algorithm. In 2009 world congress on nature & biologically inspired computing (NaBIC) (pp. 1321–1326).

    Google Scholar 

  14. Chuang, C. L., & Jiang, J. A. (2007). Integrated radiation optimization: Inspired by the gravitational radiation in the curvature of space-time. In 2007 IEEE Congress on Evolutionary Computaton CEC 2007, no. 3157 (pp. 3157–3164).

    Google Scholar 

  15. Zheng, M., Liu, G. X., Zhou, C. G., Liang, Y. C., & Wang, Y. (2010). Gravitation field algorithm and its application in gene cluster. Algorithms for Molecular Biology, 5(1), 1–11.

    Article  Google Scholar 

  16. Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60–68.

    Article  Google Scholar 

  17. Kaveh, A., & Talatahari, S. (2010). A novel heuristic optimization method: Charged system search. Acta Mechanica, 213(3–4), 267–289.

    Article  Google Scholar 

  18. Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. CAD Computer Aided Design, 43(3), 303–315.

    Article  Google Scholar 

  19. Rao, R. V. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19–34.

    Google Scholar 

  20. Mishra, S., & Ray, P. K. (2016). Power quality improvement using photovoltaic fed DSTATCOM based on Jaya optimization. IEEE Transactions on Sustainable Energy, 99, 1–9.

    Google Scholar 

  21. Gong, C. (2017). An enhanced Jaya algorithm with a two group adaption. International Journal of Computational Intelligence Systems, 10, 1102–1115.

    Article  Google Scholar 

  22. Yu, K., Liang, J., Qu, B., Chen, X., & Wang, H. (2017). Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Conversion and Management, 150, 742–753.

    Article  Google Scholar 

  23. Gao, K., Zhang, Y., Sadollah, A., Lentzakis, A., & Su, R. (2017). Jaya harmony search and water cycle algorithms for solving large-scale real-life urban traffic light scheduling problem. Swarm and Evolutionary Computation, 37, 58–72.

    Article  Google Scholar 

  24. Rao, R. V., & More, K. C. (2017). Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm. Energy Conversion and Management, 140, 24–35.

    Article  Google Scholar 

  25. Singh, S. P., Prakash, T., Singh, V., & Babu, M. G. (2017). Analytic hierarchy process based automatic generation control of multi-area interconnected power system using jaya algorithm. Engineering Applications of Artificial Intelligence, 60, 35–44.

    Article  Google Scholar 

  26. Rao, R. V., & Saroj, A. (2017). Economic optimization of shell-and-tube heat exchanger using jaya algorithm with maintenance consideration. Swarm and Evolutionary Computation, 116, 473–487.

    Google Scholar 

  27. Rao, R. V., & Saroj, A. (2017). A self-adaptive multi-population based jaya algorithm for engineering optimization. Swarm and Evolutionary Computation, 37, 1–37.

    Article  Google Scholar 

  28. Rao, R. V., & Saroj, A. (2018). Multi-objective design optimization of heat exchangers using elitist-jaya algorithm. Energy Systems, 9, 305–341.

    Article  Google Scholar 

  29. **n, J., Chen, G., & Hai, Y. (2009). A particle swarm optimizer with multi-stage linearly-decreasing inertia weight. In International joint conference on computational sciences and optimization 1 (pp. 505–508).

    Google Scholar 

  30. Umapathy, P., Venkataseshaiah, C., & Arumugam, M. S. (2010). Particle swarm optimization with various inertia weight variants for optimal power flow solution. Discrete Dynamics in Nature and Society.

    Google Scholar 

  31. Arumugam, M. S., & Rao, M. V. C. (2006). On the performance of the particle swarm optimization algorithm with various inertia weight variants for computing optimal control of a class of hybrid systems. Discrete Dynamics in Nature and Society.

    Google Scholar 

  32. Bansal, J. C., Singh, P. K., Saraswat, M., Verma, A., Jadon, S. S., & Abraham, A. (2011). Inertia weight strategies in particle swarm optimization. In Third world congress on nature and biologically inspired computing (pp. 633–640).

    Chapter  Google Scholar 

  33. Coello, C. A. C. (2000). Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 41(2), 113–127.

    Article  Google Scholar 

  34. Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2-4), 311–338.

    Article  Google Scholar 

  35. Mezura-Montes, E., & Coello, C. A. C. (2011). Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm and Evolutionary Computation, 1(4), 173–194.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix 1: List of Unconstrained Test Problems (Tables 5, 6, and 7)

Table 5 Unimodal benchmark problems
Table 6 Multimodal benchmark problems
Table 7 Fixed multidimensional benchmark problems

1.2 Appendix 2: List of Constrained Test Problems (Table 8)

Table 8 Constrained benchmark problems

Problem-1: G01

$$ \operatorname{Min}\;f(x)=5\sum \limits_{i=1}^4{x}_i-5\sum \limits_{i=1}^4{x}_i^2-\sum \limits_{i=5}^{13}{x}_i $$
  • Subject to:

    $$ {\displaystyle \begin{array}{l}{g}_1(x)=2{x}_1+2{x}_2+{x}_{10}+{x}_{11}-10\le 0\\ {}{g}_2(x)=2{x}_1+2{x}_3+{x}_{10}+{x}_{12}-10\le 0\\ {}{g}_3(x)=2{x}_2+2{x}_3+{x}_{11}+{x}_{12}-10\le 0\\ {}{g}_4(x)=-8{x}_1+{x}_{10}\le 0\\ {}{g}_5(x)=-8{x}_2+{x}_{11}\le 0\\ {}{g}_6(x)=-8{x}_3+{x}_{12}\le 0\\ {}{g}_7(x)=-2{x}_4-{x}_5+{x}_{10}\le 0\\ {}{g}_8(x)=-2{x}_6-{x}_7+{x}_{11}\le 0\\ {}{g}_9(x)=-2{x}_8-{x}_9+{x}_{12}\le 0\end{array}} $$
  • Properties:

    $$ {\displaystyle \begin{array}{l}0\le {x}_i\le 1\kern0.24em \left(i=1,2,..\dots, 9\right),0\le {x}_i\le 100\kern0.24em \left(i=10,11,12\right),\kern0.36em 0\le {x}_{13}\le 1\\ {}{x}^{\ast }=\left(1,1,1,1,1,1,1,1,1,3,3,3,1\right)\\ {}\textrm{Constraints}\;{g}_1,{g}_2,{g}_3,{g}_7,{g}_8,{g}_9\kern0.24em \textrm{are}\;\textrm{active}.\end{array}} $$

Problem-2: G02

$$ \operatorname{Max}\;f(x)=\left|\frac{\sum \limits_{i=1}^n{\cos}^4\left({x}_i\right)-2\prod \limits_{i=1}^n{\cos}^2\left({x}_i\right)}{\sum \limits_{i=1}^n{ix}_i^2}\right| $$
  • Subject to:

    $$ {\displaystyle \begin{array}{c}{g}_1(x)=0.75-\prod \limits_{i=1}^D{x}_i\le 0\\ {}{g}_2(x)=\sum \limits_{i=1}^D{x}_i-7.5D\le 0\end{array}} $$
  • Properties:

    $$ 0\le {x}_i\le 10\left(i=1,2,.\dots .,D\right),D=20 $$

The known best value is f(x*) = 0.803619

Constraint g1 is an active constraint.

Problem-3: G03

  • $$ \operatorname{Min}\;f(x)=-{\left(\sqrt{n}\right)}^n\prod \limits_{i=1}^n{x}_i $$

    Subject to:

    $$ {h}_1(x)=\sum \limits_{i=1}^n{x}_i^2-1=0 $$
  • Properties:

    $$ {\displaystyle \begin{array}{l}0\le {x}_i\le 10\left(i=1,2,..\dots, n\right)\\ {}{x}^{\ast }=\left(\frac{1}{\sqrt{n}}\right),n=10\end{array}} $$

Problem-4: G04

  • $$ \operatorname{Min}\;f(x)=5.3578547{x}_3^2+0.8356891{x}_1{x}_5+37.293239{x}_1-40792.141 $$

    Subject to:

    $$ {\displaystyle \begin{array}{c}{g}_1\left(\textrm{x}\right)=85.334407+0.0056858{x}_2{x}_5+0.0006262{x}_1{x}_4-0.0022053{x}_3{x}_5\\ {}{g}_2\left(\textrm{x}\right)=80.51249+0.0071317{x}_2{x}_5+0.0029955{x}_1{x}_2-0.0021813{x}_3^2\\ {}{g}_3\left(\textrm{x}\right)=9.300961+0.0047026{x}_3{x}_5+0.0012547{x}_1{x}_3+0.0019085{x}_3{x}_4\\ {}0\le {g}_1(x)\le 92\\ {}90\le {g}_2(x)\le 110\\ {}20\le {g}_3(x)\le 25\end{array}} $$
  • Properties:

    $$ {\displaystyle \begin{array}{l}78\le {x}_1\le 102,33\le {x}_2\le 45,27\le {x}_i\le 45\left(i=3,4,5\right)\\ {}{x}^{\ast }=\left(78,33,29.995256025682,45,36.775812905788\right)\end{array}} $$

Problem-5: G05

  • $$ \operatorname{Min}\;f(x)=3{x}_1+0.000001{x}_1^3+2{x}_2+\left(\frac{0.000002}{3}\right){x}_2^3 $$

    Subject to:

    $$ {\displaystyle \begin{array}{l}{g}_1(x)=-{x}_4+{x}_3-0.55\le 0\\ {}{g}_2(x)=-{x}_3+{x}_4-0.55\le 0\\ {}{h}_3(x)=1000\sin \left(-{x}_3-0.25\right)+1000\sin \left(-{x}_4-0.25\right)+894.8-{x}_1=0\\ {}{h}_4(x)=1000\sin \left({x}_3-0.25\right)+1000\sin \left({x}_3-{x}_4-0.25\right)+894.8-{x}_2=0\\ {}{h}_5(x)=1000\sin \left({x}_4-0.25\right)+1000\sin \left({x}_4-{x}_3-0.25\right)+1294.8=0\end{array}} $$
  • Properties:

    $$ {\displaystyle \begin{array}{l}0\le {x}_i\le 1200\left(i=1,2\right),-0.55\le {x}_2\le 0.55\left(i=3,4\right).\\ {}{x}^{\ast }=\left(679.9463,1026.067,0.1188764,-0.3962336\right).\end{array}} $$

Problem-6: G06

  • $$ \mathit{\operatorname{Min}}\;f(x)={\left({x}_1-10\right)}^3+{\left({x}_2-20\right)}^3 $$

    Subject to:

    $$ {\displaystyle \begin{array}{c}{g}_1(x)=-{\left({x}_1-5\right)}^2-{\left({x}_2-5\right)}^2+100\le 0\\ {}{g}_2(x)={\left({x}_1-6\right)}^2+{\left({x}_2-5\right)}^2-82.81\le 0\end{array}} $$
  • Properties:

    $$ {\displaystyle \begin{array}{l}13\le {x}_i\le 100,0\le {x}_2\le 100\\ {}{x}^{\ast }=\left(14.095,0.84296\right).\end{array}} $$

Problem-7: G07

$$ \operatorname{Min}\;f(x)={x}_1^2+{x}_2^2{+}{x}_1{x}_2{-}14{x}_1{-}16{x}_2{+}{\left({x}_3-10\right)}^2{+}4{\left({x}_4-5\right)}^2{+}{\left({x}_5-5\right)}^2\\{+}2{\left({x}_6-1\right)}^2{+}5{x}_7^2{+}7{\left({x}_8-11\right)}^2{+}2{\left({x}_9-10\right)}^2{+}{\left({x}_{10}-7\right)}^2+45$$
  • Subject to:

$$ {\displaystyle \begin{array}{l}{g}_1(x)=-105+4{x}_1+5{x}_2-3{x}_7+9{x}_8\le 0\\ {}{g}_2(x)=10{x}_1-8{x}_2-17{x}_7+2{x}_8\le 0\\ {}{g}_3(x)=-8{x}_1+2{x}_2+5{x}_9-2{x}_{10}-12\le 0\\ {}{g}_4(x)=3{\left({x}_1-2\right)}^2+4{\left({x}_2-3\right)}^2+2{x}_3^2-7{x}_4-120\le 0\\ {}{g}_5(x)=5{x}_1^2+8{x}_2+{\left({x}_3-6\right)}^2-2{x}_4-40\le 0\\ {}{g}_6(x)={x}_1^2+2{\left({x}_2-2\right)}^2-2{x}_1{x}_2+14{x}_5-6{x}_6\le 0\\ {}{g}_7(x)=0.5{\left({x}_1-8\right)}^2+2{\left({x}_2-4\right)}^2+3{x}_5^2-{x}_6-30\le 0\\ {}{g}_8(x)=-3{x}_1+6{x}_2+12{\left({x}_9-8\right)}^2-7{x}_{10}\le 0\end{array}} $$
  • Properties:

$$ {\displaystyle \begin{array}{l}-10\le {x}_i\le 10\;\left(i=1,2,\dots \dots, 10\right)\\ {}{x}^{\ast }=\Big(2.171996,2.363683,8.773926,5.095984,0.99065481,1.430574,\\ {}1.321644,9.828726,8.280092,8.375927\Big)\\ {}\textrm{Constraints}\;{g}_1,{g}_2,{g}_3,{g}_4,{g}_5\;\textrm{and}\;{g}_6\;\textrm{are}\;\textrm{active}.\end{array}} $$

Problem-8: G08

$$ \operatorname{Max}\;f(x)=\frac{\sin^3\left(2\pi {x}_1\right)\sin \left(2\pi {x}_2\right)}{x_1^3\left({x}_1+{x}_2\right)} $$
  • Subject to:

$$ {\displaystyle \begin{array}{c}{g}_1(x)={x}_1^2-{x}_2+1\le 0\\ {}{g}_2(x)=1-{x}_1+{\left({x}_2-4\right)}^2\le 0\end{array}} $$
  • Properties:

$$ {\displaystyle \begin{array}{l}0\le {x}_i\le 10\left(i=1,2\right).\\ {}{x}^{\ast }=\left(1.2279713,4.2453733\right).\end{array}} $$

Problem-9: G09

$$ \begin{aligned} \operatorname{Min}\;f(x)&={\left({x}_1-10\right)}^2+5{\left({x}_2-12\right)}^2+{x}_3^4+3{\left({x}_4-11\right)}^2+0{x}_5^6+7{x}_6^2\\ & \quad +{x}_7^4-4{x}_6{x}_7-10{x}_6-8{x}_7 \end{aligned} $$
  • Subject to:

    $$ {\displaystyle \begin{array}{c}{g}_1(x)=-127+2{x}_1^2+3{x}_2^4+{x}_3+4{x}_4^2+5{x}_5\le 0\\ {}{g}_2(x)=-282+7{x}_1++3{x}_2+10{x}_3^2+{x}_4-{x}_5\le 0\\ {}{g}_3(x)=-196+23{x}_1+{x}_2^2+6{x}_6^2-8{x}_7\le 0\\ {}{g}_4(x)=4{x}_1^2+{x}_2^2-3{x}_1{x}_2+2{x}_3^2+5{x}_6-11{x}_7\le 0\end{array}} $$
  • Properties:

    $$ {\displaystyle \begin{array}{l}-10\le {x}_i\le 10\left(i=1,2,.\dots \dots, 7\right)\\ {}{x}^{\ast }= \left(\begin{array}{l} 2.330499,1.951372,-0.4775414,4.365726,\\ -0.624487,1.038131,1.5942270\end{array}\right).\end{array}} $$

Problem-10: G10

$$ \operatorname{Min}\;f(x)={x}_1+{x}_2+{x}_3 $$
  • Subject to:

    $$ {\displaystyle \begin{array}{c}{g}_1(x)=-1+0.0025\left({x}_4+{x}_6\right)\le 0\\ {}{g}_2(x)=-1=0.0025\left({x}_5+{x}_7-{x}_4\right)\le 0\\ {}{g}_3(x)=-1+0.01\left({x}_8-{x}_5\right)\le 0\\ {}{g}_4(x)=-{x}_1{x}_6+833.33252{x}_4+100{x}_1-83333.333\le 0\\ {}{g}_5(x)=-{x}_2{x}_7+1250{x}_5+{x}_2{x}_4-1250{x}_4\le 0\\ {}{g}_6(x)=-{x}_3{x}_8+1250000+{x}_3{x}_5-2500{x}_5\le 0\end{array}} $$
  • Properties:

    $$ {\displaystyle \begin{array}{l}-100\le {x}_1\le 10000,1000\le {x}_i\le 10000\left(i=2,3\right),\\ 10\le {x}_i\le 1000\left(i=4,.\dots, 8\right).\\ {}{x}^{\ast }=\left(\left(\begin{array}{l} 579.19,1360.13,5109.5979,182.0174,295.5985,\\ \quad 217.9799,286.40,395.5979\end{array} \right)\right..\end{array}} \vspace*{-5pt} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deshwal, S., Kumar, P., Mogha, S.K. (2024). Improved Jaya Algorithm with Inertia Weight Factor. In: Garg, V., Deep, K., Balas, V.E. (eds) Women in Soft Computing. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-031-44706-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44706-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44705-1

  • Online ISBN: 978-3-031-44706-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation