Interpretable ML for Materials

  • Chapter
  • First Online:
Machine Learning for Materials Discovery

Abstract

The ML approaches discussed thus far focused on the develo** composition-property models or to use these models toward the inverse design of materials. However, understanding the nature of these black-box models are important so that an informed decision making process can be employed. To this extent, in this chapter, interpretable ML models are discussed. First, SHAP, a post-hoc model agnostic approach is employed to interpret the composition property model. SHAP provides insights into the features governing a property both in a qualitative and quantitative manner. Further, SHAP also provides the coupling or interaction between the input features for a given property. Finally, the use of support vector machines to interpret the structure–dynamics relationships in materials through a novel machine-learned metric, namely, “softness” is discussed. Altogether, the chapter outlines how interpretable ML can be used to gain insights into the black-box functions for materials response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.S. Schoenholz, Combining machine learning and physics to understand glassy systems. J. Phys. Conf. Ser. 1036, 012021 (2018). https://doi.org/10.1088/1742-6596/1036/1/012021. [Online]

  2. S.S. Schoenholz, E.D. Cubuk, E. Kaxiras, A.J. Liu, Relationship between local structure and relaxation in out-of-equilibrium glassy systems. Proc. Natl. Acad. Sci. 114(2), 263–267 (2017)

    Article  ADS  Google Scholar 

  3. E.D. Cubuk, S.S. Schoenholz, E. Kaxiras, A.J. Liu, Structural properties of defects in glassy liquids. J. Phys. Chem. B 120(26), 6139–6146 (2016)

    Article  Google Scholar 

  4. S.S. Schoenholz, E.D. Cubuk, D.M. Sussman, E. Kaxiras, A.J. Liu, A structural approach to relaxation in glassy liquids. Nat. Phys. 12(5), 469–471 (2016)

    Article  Google Scholar 

  5. E.D. Cubuk, S.S. Schoenholz, J.M. Rieser, B.D. Malone, J. Rottler, D.J. Durian, E. Kaxiras, A.J. Liu, Identifying structural flow defects in disordered solids using machine-learning methods. Phys. Rev. Lett. 114(10), 108001 (2015)

    Google Scholar 

  6. E.D. Cubuk, R. Ivancic, S.S. Schoenholz, D. Strickland, A. Basu, Z. Davidson, J. Fontaine, J.L. Hor, Y.-R. Huang, Y. Jiang et al., Structure-property relationships from universal signatures of plasticity in disordered solids. Science 358(6366), 1033–1037 (2017)

    Article  ADS  Google Scholar 

  7. M.L. Falk, J.S. Langer, Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57(6), 7192–7205 (1998). https://doi.org/10.1103/PhysRevE.57.7192. [Online]. https://link.aps.org/doi/10.1103/PhysRevE.57.7192

  8. A. Smessaert, J. Rottler, Distribution of local relaxation events in an aging three-dimensional glass: Spatiotemporal correlation and dynamical het- erogeneity. Phys. Rev. E 88(2), 022314 (2013). https://doi.org/10.1103/PhysRevE.88.022314. [Online]. https://link.aps.org/doi/10.1103/PhysRevE.88.022314

  9. R. Candelier, A. Widmer-Cooper, J.K. Kummerfeld, O. Dauchot, G. Biroli, P. Harrowell, D.R. Reichman, Spatiotemporal hierarchy of relaxation events, dynamical heterogeneities, and structural reorganization in a supercooled liquid. Phys. Rev. Lett. 105(13), 135702 (2010). https://doi.org/10.1103/PhysRevLett.105.135702. [Online]. https://link.aps.org/doi/10.1103/PhysRevLett.105.135702

  10. C. Molnar, Interpretable Machine Learning. Lulu.com (2020)

    Google Scholar 

  11. S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 4768–4777 (2017)

    Google Scholar 

  12. K. Yang, X. Xu, B. Yang, B. Cook, H. Ramos, N.M.A. Krishnan, M.M. Smedskjaer, C. Hoover, M. Bauchy, Predicting the Young’s modulus of silicate glasses using high-throughput molecular dynamics simulations and machine learning. Sci. Rep. 9(1), 8739 (2019). ISSN: 2045-2322. https://doi.org/10.1038/s41598-019-45344-3. [Online]. https://www.nature.com/articles/s41598-019-45344-3. Accessed 07 May 2019

  13. M. Zaki, Jayadeva, N.A. Krishnan, Extracting processing and testing parameters from materials science literature for improved property prediction of glasses. Chem. Eng. Process. Process. Intensif. 108607 (2021). ISSN: 0255-2701. https://doi.org/10.1016/j.cep.2021.108607. [Online]. https://www.sciencedirect.com/science/article/pii/S0255270121003020

  14. R. Bhattoo, S. Bishnoi, M. Zaki, N.A. Krishnan, Understanding the compositional control on electrical, mechanical, optical, and physical properties of inorganic glasses with interpretable machine learning. Acta Mater. 242, 118439 (2023)

    Google Scholar 

  15. M. Zaki, V. Venugopal, R. Bhattoo, S. Bishnoi, S.K. Singh, A.R. Allu, Jayadeva, N.A. Krishnan, Interpreting the optical properties of oxide glasses with machine learning and shapely additive explanations. J. Am. Ceram. Soc. 105(6), 4046–4057 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Anoop Krishnan .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnan, N.M.A., Kodamana, H., Bhattoo, R. (2024). Interpretable ML for Materials. In: Machine Learning for Materials Discovery. Machine Intelligence for Materials Science. Springer, Cham. https://doi.org/10.1007/978-3-031-44622-1_12

Download citation

Publish with us

Policies and ethics

Navigation