UAV-Borne Measurements of Solar-Induced Chlorophyll Fluorescence (SIF) at a Boreal Site

  • Conference paper
  • First Online:
New Developments and Environmental Applications of Drones (FinDrones 2023)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aasen, H., Van Wittenberghe, S., Medina, N., Damm, A., Goulas, Y., Wieneke, S., Hueni, A., Malenovský, Z., Alonso, L., Pacheco-Labrador, J., Cendrero-Mateo, M.P., Tomelleri, E., Burkart, A., Cogliati, S., Rascher, U., Arthur, A.: Sun-induced chlorophyll fluorescence II: review of passive measurement setups, protocols, and their application at the leaf to canopy level. Remote Sens. 11(8), 927 (2019). https://doi.org/10.3390/rs11080927

    Article  Google Scholar 

  2. Alonso, L., Gómez-Chova, L., Vila-Francés, J., Amorós-López, J., Guanter, L., Calpe, J.: Improved fraunhofer line discrimination method for vegetation fluorescence quantification. IEEE Geosci. Remote Sens. Lett. 5, 620–624 (2008). https://doi.org/10.1109/LGRS.2008.2001180

    Article  Google Scholar 

  3. Atherton, J., MacArthur, A., Hakala, T., Maseyk, K., Robinson, I., Weiwei, L., Honkavaara, E., Porcar-Castell, A.: Drone measurements of solar-induced chlorophyll fluorescence acquired with a low-weight DFOV spectrometer system. In: IGARSS 2018: 2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE International Symposium on Geoscience and Remote Sensing IGARSS, IEEE, pp. 8834-8836, 38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22/07/2018 (2018). https://doi.org/10.1109/IGARSS.2018.8517474

  4. Baker, N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. Ann. Rev. Plant Biol. 59(1), 89–113 (2008). https://doi.org/10.1146/annurev.arplant.59.032607.092759

    Article  Google Scholar 

  5. Bandopadhyay, S., Rastogi, A., Juszczak, R.: Review of top-of-canopy sun-induced fluorescence (SIF) studies from ground, UAV, airborne to spaceborne observations. Sensors 20(4), 1144 (2020). https://doi.org/10.3390/s20041144

    Article  Google Scholar 

  6. Bendig, J., Malenovsky, Z., Gautam, D., Lucieer, A.: Solar-induced chlorophyll fluorescence measured from an unmanned aircraft system: sensor etaloning and platform motion correction. IEEE Trans. Geosci. Remote Sens. 58(5), 3437–3444 (2020). https://doi.org/10.1109/TGRS.2019.2956194

    Article  Google Scholar 

  7. Calderón, R., Navas-Cortés, J., Lucena, C., Zarco-Tejada, P.: High-resolution airborne hyperspectral and thermal imagery for early detection of verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 139, 231–245 (2013). https://doi.org/10.1016/j.rse.2013.07.031

    Article  Google Scholar 

  8. Cendrero-Mateo, M.P., Wieneke, S., Damm, A., Alonso, L., Pinto, F., Moreno, J., Guanter, L., Celesti, M., Rossini, M., Sabater, N., Cogliati, S., Julitta, T., Rascher, U., Goulas, Y., Aasen, H., Pacheco-Labrador, J., Mac Arthur, A.: Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing. Remote Sens. 11(8), 962 (2019). https://doi.org/10.3390/rs11080962

    Article  Google Scholar 

  9. Chang, C., Zhou, R., Kira, O., Marri, S., Skovira, J., Gu, L., Sun, Y.: An unmanned aerial system (UAS) for concurrent measurements of solar-induced chlorophyll fluorescence and hyperspectral reflectance toward improving crop monitoring. Agricult. Forest Meteorol. 294, 108145 (2020). https://doi.org/10.1016/j.agrformet.2020.108145

    Article  Google Scholar 

  10. Damm, A., Erler, A., Hillen, W., Meroni, M., Schaepman, M.E., Verhoef, W., Rascher, U.: Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence. Remote Sens. Environ. 115, 1882–1892 (2011). https://doi.org/10.1016/j.rse.2011.03.011

    Article  Google Scholar 

  11. Drusch, M., Moreno, J., Bello, U.D., Franco, R., Goulas, Y., Hut, A., Kraft, S., Middleton, E.M., Miglietta, F., Mohammed, G., Nedbal, L., Rascher, U., Schüttemeyer, D., Verhoef, W.: The fluorescence explorer mission concept—ESA’s earth explorer 8. IEEE Trans. Geosci. Remote Sens. 55(3), 1273–1284 (2017)

    Article  Google Scholar 

  12. Frankenberg, C., Berry, J.: Solar induced chlorophyll fluorescence: origins, relation to photosynthesis and retrieval. In: Liang, S. (ed.) Comprehensive Remote Sensing, chap. 3.1, pp. 143–162. Elsevier, Amsterdam (2018)

    Chapter  Google Scholar 

  13. Frankenberg, C., Fisher, J.B., Worden, J., Badgley, G., Saatchi, S.S., Lee, J.E., Toon, G.C., Butz, A., Jung, M., Kuze, A., Yokota, T.: New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38(17), L17706 (2011). https://doi.org/10.1029/2011GL048738

    Article  Google Scholar 

  14. Frankenberg, C., O’Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., Pollock, R., Taylor, T.E.: Prospects for chlorophyll fluorescence remote sensing from the orbiting carbon observatory-2. Remote Sens. Environ. 147, 1–12 (2014). https://doi.org/10.1016/j.rse.2014.02.007

    Article  Google Scholar 

  15. Garzonio, R., Di Mauro, B., Colombo, R., Cogliati, S.: Surface reflectance and sun-induced fluorescence spectroscopy measurements using a small hyperspectral UAS. Remote Sens. 9(5) (2017). https://doi.org/10.3390/rs9050472

  16. Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P.E., Gómez-Dans, J., Kuze, A., Suto, H., Grainger, R.G.: Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 121, 236–251 (2012). https://doi.org/10.1016/j.rse.2012.02.006

    Article  Google Scholar 

  17. Guanter, L., Bacour, C., Schneider, A., Aben, I., van Kempen, T.A., Maignan, F., Retscher, C., Köhler, P., Frankenberg, C., Joiner, J., Zhang, Y.: The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission. Earth Syst. Sci. Data 13(11), 5423–5440 (2021). https://doi.org/10.5194/essd-13-5423-2021

    Article  Google Scholar 

  18. IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, vol. In Press. Cambridge University Press, Cambridge, United Kingdom and New York, (2021). https://doi.org/10.1017/9781009157896

  19. Joiner, J., Yoshida, Y., Vasilkov, A., Yoshida, Y., Corp, L., Middleton, E.: First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8(3), 637–651 (2011). https://doi.org/10.5194/bg-8-637-2011

    Article  Google Scholar 

  20. Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A.P., Middleton, E.M., Huemmrich, K.F., Yoshida, Y., Frankenberg, C.: Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmospher. Measure. Techn. 6(10), 2803–2823 (2013). https://doi.org/10.5194/amt-6-2803-2013

    Article  Google Scholar 

  21. Joiner, J., Yoshida, Y., Zhang, Y., Duveiller, G., Jung, M., Lyapustin, A., Wang, Y., Tucker, C.J.: Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 10(9) (2018). https://doi.org/10.3390/rs10091346

  22. Kivi, R., Heikkinen, P.: Fourier transform spectrometer measurements of column CO\({ }_{2}\) at Sodankylä, Finland. Geosci. Instrument. Methods Data Syst. 5(2), 271–279 (2016). https://doi.org/10.5194/gi-5-271-2016

  23. Köhler, P., Guanter, L., Joiner, J.: A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmosph. Measur. Techn. 8(6), 2589–2608 (2015). https://doi.org/10.5194/amt-8-2589-2015

    Article  Google Scholar 

  24. Köhler, P., Frankenberg, C., Magney, T.S., Guanter, L., Joiner, J., Landgraf, J.: Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and intersensor comparison to OCO-2. Geophys. Res. Lette. 45(19), 10456–10463 (2018). https://doi.org/10.1029/2018GL079031

    Article  Google Scholar 

  25. MacArthur, A., Robinson, I., Rossini, M., Davis, N., MacDonald, K.: A dual-field-of-view spectrometer system for reflectance and fluorescence measurements (Piccolo Doppio) and correction of etaloning. In: Proceedings of the Fifth International Workshop on Remote Sensing of Vegetation Fluorescence, Fifth International Workshop on Remote Sensing of Vegetation Fluorescence, Paris, United Kingdom, 22/04/14 (2014)

    Google Scholar 

  26. Magney, T.S., Barnes, M.L., Yang, X.: On the covariation of chlorophyll fluorescence and photosynthesis across scales. Geophys. Res. Lett. 47(23), e2020GL091098 (2020). https://doi.org/10.1029/2020GL091098

  27. Maseyk, K., Atherton, J., Thomas, R., Wood, K., Tausz-Posch, S., Arthur, A., Porcar-Castell, A., Tausz, M.: Investigating forest photosynthetic response to elevated CO 2 using UAV-based measurements of solar induced fluorescence. In: GARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, vol. 2018–July, pp. 8830–8833 (2018). https://doi.org/10.1109/IGARSS.2018.8517348

  28. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence - a practical guide. J. Experim. Botany 51, 659–668 (2000)

    Article  Google Scholar 

  29. Meroni, M., Rossini, M., Guanter, L., Alonso, L., Rascher, U., Colombo, R., Moreno, J.: Remote sensing of solar-induced chlorophyll fluorescence: review of methods and applications. Remote Sens. Environ. 113(10), 2037–2051 (2009). https://doi.org/10.1016/j.rse.2009.05.003

    Article  Google Scholar 

  30. Migliavacca, M., Perez-Priego, O., Rossini, M., El-Madany, T.S., Moreno, G., van der Tol, C., Rascher, U., Berninger, A., Bessenbacher, V., Burkart, A., Carrara, A., Fava, F., Guan, J.H., Hammer, T.W., Henkel, K., Juarez-Alcalde, E., Julitta, T., Kolle, O., Martín, M.P., Musavi, T., Pacheco-Labrador, J., Pérez-Burgueño, A., Wutzler, T., Zaehle, S., Reichstein, M.: Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability. New Phytol. 214(3), 1078–1091 (2017). https://doi.org/10.1111/nph.14437

  31. Mihai, L., Mac Arthur, A., Hueni, A., Robinson, I., Sporea, D.: Optimized spectrometers characterization procedure for near ground support of ESA FLEX observations: part 1 spectral calibration and characterisation. Remote Sens. 10(2), 289 (2018). https://doi.org/10.3390/rs10020289

    Article  Google Scholar 

  32. Mohammed, G.H., Colombo, R., Middleton, E.M., Rascher, U., van der Tol, C., Nedbal, L., Goulas, Y., Pérez-Priego, O., Damm, A., Meroni, M., Joiner, J., Cogliati, S., Verhoef, W., Malenovský, Z., Gastellu-Etchegorry, J.P., Miller, J.R., Guanter, L., Moreno, J., Moya, I., Berry, J.A., Frankenberg, C., Zarco-Tejada, P.J.: Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50years of progress. Remote Sens. Environ. 231, 111177 (2019). https://doi.org/10.1016/j.rse.2019.04.030

  33. Pacheco-Labrador, J., Hueni, A., Mihai, L., Sakowska, K., Julitta, T., Kuusk, J., Sporea, D., Alonso, L., Burkart, A., Cendrero-Mateo, M.P., Aasen, H., Goulas, Y., Mac Arthur, A.: Sun-induced chlorophyll fluorescence I: instrumental considerations for proximal spectroradiometers. Remote Sens. 11(8), 960 (2019). https://doi.org/10.3390/rs11080960

    Article  Google Scholar 

  34. Porcar-Castell, A., Tyystjärvi, E., Atherton, J., Van Der Tol, C., Flexas, J., Pfündel, E., Moreno, J., Frankenberg, C., Berry, J.: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J. Experim. Botany 65(15), 4065–4095 (2014). https://doi.org/10.1093/jxb/eru191

    Article  Google Scholar 

  35. Porcar-Castell, A., Malenovský, Z., Magney, T., Van Wittenberghe, S., Fernandez-Marin, B., Maignan, F., Zhang, Y., Maseyk, K., Atherton, J., Albert, L., Robson, T., Zhao, F., Garcia Plazaola, J.I., Ensminger, I., Rajewicz, P., Grebe, S., Tikkanen, M., Kellner, J., Ihalainen, J., Logan, B.: Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nat. Plants 7, 998–1009 (2021). https://doi.org/10.1038/s41477-021-00980-4

    Article  Google Scholar 

  36. Sabater, N., Vicent, J., Alonso, L., Verrelst, J., Middleton, E., Porcar-Castell, A., Moreno, J.: Compensation of oxygen transmittance effects for proximal sensing retrieval of canopy-leaving sun-induced chlorophyll Fluorescence. Remote Sens. 10(10), 1551 (2018). https://doi.org/10.3390/rs10101551

    Article  Google Scholar 

  37. Sabater, N., Kolmonen, P., Van Wittenberghe, S., Arola, A., Moreno, J.: Challenges in the atmospheric characterization for the retrieval of spectrally resolved fluorescence and PRI region dynamics from space. Remote Sens. Environ. 254, 112226 (2021). https://doi.org/10.1016/j.rse.2020.112226

    Article  Google Scholar 

  38. Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., Magney, T.: Overview of solar-induced chlorophyll fluorescence (SIF) from the orbiting Carbon observatory-2: retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sens. Environ. 209, 808–823 (2018). https://doi.org/10.1016/j.rse.2018.02.016

    Article  Google Scholar 

  39. Thum, T., Zaehle, S., Köhler, P., Aalto, T., Aurela, M., Guanter, L., Kolari, P., Laurila, T., Lohila, A., Magnani, F., Van Der Tol, C., Markkanen, T.: Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe. Biogeosciences 14(7), 1969–1984 (2017). https://doi.org/10.5194/bg-14-1969-2017

    Article  Google Scholar 

  40. Walther, S., Voigt, M., Thum, T., Gonsamo, A., Zhang, Y., Köhler, P., Jung, M., Varlagin, A., Guanter, L.: Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Global Change Biol. 22(9), 2979–2996 (2016). https://doi.org/10.1111/gcb.13200

    Article  Google Scholar 

  41. Xu, S., Atherton, J., Riikonen, A., Zhang, C., Oivukkamäki, J., MacArthur, A., Honkavaara, E., Hakala, T., Koivumäki, N., Liu, Z., Porcar-Castell, A.: Structural and photosynthetic dynamics mediate the response of SIF to water stress in a potato crop. Remote Sens. Environ. 263, 112555 (2021). https://doi.org/10.1016/j.rse.2021.112555

    Article  Google Scholar 

  42. Zarco-Tejada, P., Berni, J., Suárez, L., Sepulcre-Cantó, G., Morales, F., Miller, J.: Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection. Remote Sens. Environ. 113(6), 1262–1275 (2009). https://doi.org/10.1016/j.rse.2009.02.016

    Article  Google Scholar 

  43. Zarco-Tejada, P., González-Dugo, V., Berni, J.: Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 117, 322–337 (2012). https://doi.org/10.1016/j.rse.2011.10.007

    Article  Google Scholar 

  44. Zarco-Tejada, P., Catalina, A., González, M., Martín, P.: Relationships between net photosynthesis and steady-state chlorophyll fluorescence retrieved from airborne hyperspectral imagery. Remote Sens. Environ. 136, 247–258 (2013). https://doi.org/10.1016/j.rse.2013.05.011

    Article  Google Scholar 

  45. Zarco-Tejada, P., Suarez, L., Gonzalez-Dugo, V.: Spatial resolution effects on chlorophyll fluorescence retrieval in a heterogeneous canopy using hyperspectral imagery and radiative transfer simulation. IEEE Geosci. Remote Sens. Lett. 10(4), 937–941 (2013). https://doi.org/10.1109/LGRS.2013.2252877

    Article  Google Scholar 

  46. Zhang, Z., Zhang, Y., Zhang, Q., Chen, J.M., Porcar-Castell, A., Guanter, L., Wu, Y., Zhang, X., Wang, H., Ding, D., Li, Z.: Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll fluorescence in crop canopies. Agricult. Forest Meteorol. 295, 108147 (2020). https://doi.org/10.1016/j.agrformet.2020.108147

    Article  Google Scholar 

Download references

Acknowledgements

Research has been partially funded by the Academy of Finland (grant agreements 337552, 331829, and 330165). The instrument was purchased with FMI investment funding for innovative measurements. The technical staff at the FMI Arctic Space Centre are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marika Honkanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Honkanen, M., Heikkinen, P., MacArthur, A., Thum, T., Kivi, R., Lindqvist, H. (2024). UAV-Borne Measurements of Solar-Induced Chlorophyll Fluorescence (SIF) at a Boreal Site. In: Westerlund, T., Peña Queralta, J. (eds) New Developments and Environmental Applications of Drones. FinDrones 2023. Springer, Cham. https://doi.org/10.1007/978-3-031-44607-8_8

Download citation

Publish with us

Policies and ethics

Navigation