Part of the book series: Nanostructure Science and Technology ((NST))

  • 136 Accesses

Abstract

Nanomaterials comprise the study of chemical materials or substances within the nanoscale, i.e. in the range of 1–100 nm. At this nanoscale, materials show inimitable properties based on their quantum phenomena (electron tunnelling, near field-optical methods, electron confinement ballistic transport, and quantum entanglement) or on the basis of subdomains (superparamagnetism and overlap** of double layers in the fluids).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taghipour F (2004) Ultraviolet and ionizing radiation for microorganism inactivation. Water Res 38(18):3940–3948. https://doi.org/10.1016/j.watres.2004.06.016

    Article  PubMed  Google Scholar 

  2. Amodu OS, Ojumu TV, Ntwampe SK, Ayanda OS (2015) Rapid adsorption of crystal violet onto magnetic zeolite synthesized from fly ash and magnetite nanoparticles. J Encaps Adsorp Sci 05(04):191–203. https://doi.org/10.4236/jeas.2015.54016

    Article  Google Scholar 

  3. Wu R, Liu JH, Zhao L, Zhang X, **e J, Yu B, Ma X, Yang S-T, Wang H, Liu Y (2014) Hydrothermal preparation of magnetic Fe3O4@C nanoparticles for dye adsorption. J Environ Chem Eng 2(2):907–913. https://doi.org/10.1016/j.jece.2014.02.005

    Article  Google Scholar 

  4. Stoia M, Pəcurariu C, Istratie R, Nižňanský D (2015) Solvothermal synthesis of magnetic FexOy/C nanocomposites used as adsorbents for the removal of methylene blue from wastewater. J Therm Anal Calorim 121(3):989–1001. https://doi.org/10.1007/s10973-015-4641-x

    Article  Google Scholar 

  5. Fayazi M, Ghanei-Motlagh M, Taher MA (2015) The adsorption of basic dye (Alizarin red S) from aqueous solution onto activated carbon/γ-Fe2O3 nano-composite: kinetic and equilibrium studies. Mater Sci Semicond Process 40:35–43. https://doi.org/10.1016/j.mssp.2015.06.044

    Article  Google Scholar 

  6. Madrakian T, Afkhami A, Ahmadi M, Bagheri H (2011) Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J Hazard Mater 196:109–114. https://doi.org/10.1016/j.jhazmat.2011.08.078

    Article  PubMed  Google Scholar 

  7. Ranjithkumar V, Sangeetha S, Vairam S (2014) Synthesis of magnetic activated carbon/α-Fe2O3 nanocomposite and its application in the removal of acid yellow 17 dye from water. J Hazard Mater 273:127–135. https://doi.org/10.1016/j.jhazmat.2014.03.034

    Article  PubMed  Google Scholar 

  8. Liu F, ** Y, Liao H, Cai L, Tong M, Hou Y (2013) Facile self-assembly synthesis of titanate/Fe3O4 nanocomposites for the efficient removal of Pb2+ from aqueous systems. J Mater Chem A 1(3):805–813. https://doi.org/10.1039/c2ta00099g

    Article  Google Scholar 

  9. Anbia M, Khoshbooei S (2015) Functionalized magnetic MCM-48 nanoporous silica by cyanuric chloride for removal of chlorophenol and bromophenol from aqueous media. J Nanostruct Chem 5(1):139–146. https://doi.org/10.1007/s40097-014-0145-7

    Article  Google Scholar 

  10. Zhang LH, Sun Q, Liu DH, Lu AH (2013) Magnetic hollow carbon nanospheres for removal of chromium ions. J Mater Chem A 1(33):9477–9483. https://doi.org/10.1039/c3ta10430c

    Article  Google Scholar 

  11. Zhang X, Wang Y, Chang X, Wang P, Pan B (2017) Iron oxide nanoparticles confined in mesoporous silicates for arsenic sequestration: effect of the host pore structure. Environ Sci Nano 4(3):679–688. https://doi.org/10.1039/c6en00514d

    Article  Google Scholar 

  12. Gwak GH, Kim MK, Oh JM (2016) Nanocomposites of magnetite and layered double hydroxide for recyclable chromate removal. J Nanomater 2016(V). https://doi.org/10.1155/2016/8032615

  13. Jafari Kang A, Baghdadi M, Pardakhti A (2016) Removal of cadmium and lead from aqueous solutions by magnetic acid-treated activated carbon nanocomposite. Desalin Water Treat 57(40):18782–18798. https://doi.org/10.1080/19443994.2015.1095123

    Article  Google Scholar 

  14. Wu Z, Li W, Webley PA, Zhao D (2012) General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. Adv Mater 24(4):485–491. https://doi.org/10.1002/adma.201103789

    Article  PubMed  Google Scholar 

  15. Bayazit ŞS (2014) Magnetic multi-wall carbon nanotubes for methyl orange removal from aqueous solutions: equilibrium, kinetic and thermodynamic studies. Sep Sci Technol (Philadelphia) 49(9):1389–1400. https://doi.org/10.1080/01496395.2013.879595

    Article  Google Scholar 

  16. Egodawatte S, Datt A, Burns EA, Larsen SC (2015) Chemical insight into the adsorption of chromium(III) on iron oxide/mesoporous silica nanocomposites. Langmuir 31(27):7553–7562. https://doi.org/10.1021/acs.langmuir.5b01483

    Article  PubMed  Google Scholar 

  17. Dwivedi MK, Agrawal R, Sharma P (2016) Adsorptive removal of methylene blue from wastewater using zeolite-iron oxide magnetic nanocomposite. Int J Adv Res Sci Eng 5(2):515–522

    Google Scholar 

  18. Deligeer W, Gao YW, Asuha S (2011) Adsorption of methyl orange on mesoporous γ-Fe2O3/SiO2 nanocomposites. Appl Surf Sci 257(8):3524–3528. https://doi.org/10.1016/j.apsusc.2010.11.067

    Article  Google Scholar 

  19. Jain N, Dwivedi MK, Agarwal R, Sharma P (2015) Removal of malachite green from aqueous solution by zeolite-iron oxide magnetic nanocomposite. IOSR J Environ Sci Ver I 9(6):2319–2399. https://doi.org/10.9790/2402-09614250

  20. Yao S, Sun S, Wang S, Shi Z (2016) Adsorptive removal of lead ion from aqueous solution by activated carbon/iron oxide magnetic composite. Indian J Chem Technol 23(2):146–152

    Google Scholar 

  21. Sahoo JK, Paikra SK, Baliarsingh A, Panda D, Rath S, Mishra M, Sahoo H (2020) Surface functionalization of graphene oxide using amino silane magnetic nanocomposite for chromium (VI) removal and bacterial treatment. Nano Express 1(1):010062. https://doi.org/10.1088/2632-959x/ab9e3f

    Article  Google Scholar 

  22. Kloster GA, Mosiewicki MA, Marcovich NE (2019) Chitosan/iron oxide nanocomposite films: effect of the composition and preparation methods on the adsorption of Congo red. Carbohydr Polym 221:186–194. https://doi.org/10.1016/j.carbpol.2019.05.089

    Article  PubMed  Google Scholar 

  23. Chu JH, Kang JK, Park SJ, Lee CG (2020) Application of magnetic biochar derived from food waste in heterogeneous sono-Fenton-like process for removal of organic dyes from aqueous solution. J Water Process Eng 37:101455. https://doi.org/10.1016/j.jwpe.2020.101455

    Article  Google Scholar 

  24. Amer R, Hadi H (2021) Application of CTAB-coated magnetic nanoparticles for solid-phase extraction of thiamine hydrochloride from pharmaceutical formulations and urine samples. Arab J Sci Eng 0123456789. https://doi.org/10.1007/s13369-021-05671-y

  25. Zhang J, Liu M, Yang T, Yang K, Wang H (2016) A novel magnetic biochar from sewage sludge: synthesis and its application for the removal of malachite green from wastewater. Water Sci Technol 74(8):1971–1979. https://doi.org/10.2166/wst.2016.386

    Article  PubMed  Google Scholar 

  26. Schneider M, Ballweg T, Groß L, Gellermann C, Sanchez-Sanchez A, Fierro V, Celzard A, Mandel K (2019) Magnetic carbon composite particles for dye adsorption from water and their electrochemical regeneration. Part Part Syst Charact 36(6):1–11. https://doi.org/10.1002/ppsc.201800537

    Article  Google Scholar 

  27. Borth KW, Galdino CW, Teixeira VDC, Anaissi FJ (2021) Iron oxide nanoparticles obtained from steel waste recycling as a green alternative for Congo red dye fast adsorption. Appl Surf Sci 546. https://doi.org/10.1016/j.apsusc.2021.149126

  28. Jia Z, Liu J, Wang Q, Li S, Qi Q, Zhu R (2015) Synthesis of 3D hierarchical porous iron oxides for adsorption of Congo red from dye wastewater. J Alloy Compd 622:587–595. https://doi.org/10.1016/j.jallcom.2014.10.125

    Article  Google Scholar 

  29. Abdullah NH, Shameli K, Abdullah EC, Abdullah LC (2019) Solid matrices for fabrication of magnetic iron oxide nanocomposites: synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Compos B Eng 162:538–568. https://doi.org/10.1016/j.compositesb.2018.12.075

    Article  Google Scholar 

  30. Othman NH, Alias NH, Shahruddin MZ, Abu Bakar NF, Nik Him NR, Lau WJ (2018) Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide. J Environ Chem Eng 6(2):2803–2811. https://doi.org/10.1016/j.jece.2018.04.024

    Article  Google Scholar 

  31. Tan KB, Vakili M, Horri BA, Poh PE, Abdullah AZ, Salamatinia B (2015) Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep Purif Technol 150:229–242. https://doi.org/10.1016/j.seppur.2015.07.009

    Article  Google Scholar 

  32. Lilhare S, Mathew SB, Singh AK, Carabineiro SAC (2021) Calcium alginate beads with entrapped iron oxide magnetic nanoparticles functionalized with methionine—a versatile adsorbent for arsenic removal. Nanomaterials 11(5). https://doi.org/10.3390/nano11051345

  33. Dai H (2019) Green and facile fabrication of pineapple peel cellulose/magnetic diatomite hydrogels in ionic liquid for methylene blue adsorption. Cellulose 6(381). https://doi.org/10.1007/s10570-019-02283-6

  34. Wang H, Zhao W, Chen Y, Li Y (2020) Nickel aluminum layered double oxides modified magnetic biochar from waste corncob for efficient removal of acridine orange. Bioresour Technol 315:123834. https://doi.org/10.1016/j.biortech.2020.123834

    Article  PubMed  Google Scholar 

  35. Ehsan A, Bhatti HN, Iqbal M, Noreen S (2017) Native, acidic pre-treated and composite clay efficiency for the adsorption of dicationic dye in aqueous medium. Water Sci Technol 75(4):753–764. https://doi.org/10.2166/wst.2016.435

    Article  PubMed  Google Scholar 

  36. Rajabi M, Mahanpoor K, Moradi O (2019) Preparation of PMMA/GO and PMMA/GO-Fe3O4 nanocomposites for malachite green dye adsorption: kinetic and thermodynamic studies. Compos B Eng 167:544–555. https://doi.org/10.1016/j.compositesb.2019.03.030

  37. Zhang P, O’Connor D, Wang Y, Jiang L, **a T, Wang L, Tsang DCW, Ok YS, Hou D (2020) A green biochar/iron oxide composite for methylene blue removal. J Hazard Mater 384:121286. https://doi.org/10.1016/j.jhazmat.2019.121286

  38. Kanwal A, Bhatti HN, Iqbal M, Noreen S (2017) Basic dye adsorption onto clay/MnFe2O4 composite: a mechanistic study. Water Environ Res 89(4):301–311. https://doi.org/10.2175/106143017x14839994522984

    Article  PubMed  Google Scholar 

  39. Sehlleier YH, Hardt S, Schulz C, Wiggers H (2016) A novel magnetically-separable porous iron-oxide nanocomposite as an adsorbent for methylene blue (MB) dye. J Environ Chem Eng 4(4):3779–3787. https://doi.org/10.1016/j.jece.2016.08.018

    Article  Google Scholar 

  40. Pramanik N, Ranganathan S, Rao S, Suneet K, Jain S, Rangarajan A, Jhunjhunwala S (2019) A composite of hyaluronic acid-modified graphene oxide and iron oxide nanoparticles for targeted drug delivery and magnetothermal therapy. ACS Omega 4(5):9284–9293. https://doi.org/10.1021/acsomega.9b00870

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rebuttini V, Fazio E, Santangelo S, Neri F, Caputo G, Martin C, Brousse T, Favier F, Pinna N (2015) Chemical modification of graphene oxide through diazonium chemistry and its influence on the structure-property relationships of graphene oxide-iron oxide nanocomposites. Chem Eur J 21(35):12465–12474. https://doi.org/10.1002/chem.201500836

    Article  PubMed  Google Scholar 

  42. Eren E, Cubuk O, Ciftci H, Eren B, Caglar B (2010) Adsorption of basic dye from aqueous solutions by modified sepiolite: equilibrium, kinetics and thermodynamics study. Desalination 252(1–3):88–96. https://doi.org/10.1016/j.desal.2009.10.020

    Article  Google Scholar 

  43. El Qada EN, Allen SJ, Walker GM (2008) Adsorption of basic dyes from aqueous solution onto activated carbons. Chem Eng J 135(3):174–184. https://doi.org/10.1016/j.cej.2007.02.023

    Article  Google Scholar 

  44. Mall ID, Srivastava VC, Agarwal NK, Mishra IM (2005) Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids Surf A Physicochem Eng Asp 264(1–3):17–28. https://doi.org/10.1016/j.colsurfa.2005.03.027

    Article  Google Scholar 

  45. Shen D, Fan J, Zhou W, Gao B, Yue Q, Kang Q (2009) Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. J Hazard Mater 172(1):99–107. https://doi.org/10.1016/j.jhazmat.2009.06.139

    Article  PubMed  Google Scholar 

  46. Nageeb M (2013) Adsorption technique for the removal of organic pollutants from water and wastewater. In: Organic pollutants—monitoring, risk and treatment. https://doi.org/10.5772/54048

  47. Bhatti HN, Jabeen A, Iqbal M, Noreen S, Naseem Z (2017) Adsorptive behavior of rice bran-based composites for malachite green dye: isotherm, kinetic and thermodynamic studies. J Mol Liq 237:322–333. https://doi.org/10.1016/j.molliq.2017.04.033

    Article  Google Scholar 

  48. Demirbas A (2009) Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J Hazard Mater 167(1–3):1–9. https://doi.org/10.1016/j.jhazmat.2008.12.114

    Article  PubMed  Google Scholar 

  49. Santhosh C, Daneshvar E, Tripathi KM, Baltrėnas P, Kim TY, Baltrėnaitė E, Bhatnagar A (2020) Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr(VI) and Acid orange 7 dye from aqueous solution. Environ Sci Pollut Res 27(26):32874–32887. https://doi.org/10.1007/s11356-020-09275-1

    Article  Google Scholar 

  50. Wang L, Hu G, Lyu F, Yue T, Tang H, Han H, Yang Y, Liu R, Sun W (2019) Application of red mud in wastewater treatment. Minerals 9(5). https://doi.org/10.3390/min9050281

  51. Samrot AV, Ali HH, Selvarani J, Faradjeva E, Raji P, Prakash P, Kumar SS (2021) Adsorption efficiency of chemically synthesized superparamagnetic iron oxide nanoparticles (SPIONs) on crystal violet dye. Curr Res Green Sustain Chem 4:100066. https://doi.org/10.1016/j.crgsc.2021.100066

  52. McCoy TM, Brown P, Eastoe J, Tabor RF (2015) Noncovalent magnetic control and reversible recovery of graphene oxide using iron oxide and magnetic surfactants. ACS Appl Mater Interfaces 7(3):2124–2133. https://doi.org/10.1021/am508565d

    Article  PubMed  Google Scholar 

  53. Yang X, Chen C, Li J, Zhao G, Ren X, Wang X (2012) Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv 2(23):8821–8826. https://doi.org/10.1039/c2ra20885g

    Article  Google Scholar 

  54. Pham XH, Hahm E, Kim HM, Son BS, Jo A, An J, Thi TAT, Nguyen DQ, Jun BH (2020) Silica-coated magnetic iron oxide nanoparticles grafted onto graphene oxide for protein isolation. Nanomaterials 10(1):1–14. https://doi.org/10.3390/nano10010117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Kumar Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, J.K., Prusty, S. (2024). Introduction. In: Sahoo, H., Sahoo, J.K. (eds) Iron Oxide-Based Nanocomposites and Nanoenzymes. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-44599-6_1

Download citation

Publish with us

Policies and ethics

Navigation