Radiomics Feature Selection from Thyroid Thermal Images to Improve Thyroid Nodules Interpretations

  • Conference paper
  • First Online:
Artificial Intelligence over Infrared Images for Medical Applications (AIIIMA 2023)

Abstract

The early detection of malignant nodules and timely diagnosis of thyroid abnormalities play a crucial role in improving medical treatment outcomes and minimizing disease progression. Thermography has emerged as an affordable and non-radiation method for detecting thyroid issues, reducing the risks associated with unnecessary invasive biopsies. By extracting radiomics features from thermal images of the thyroid, valuable information about the underlying tissue characteristics can be obtained, offering numerous advantages in the field of medical imaging. In this study, radiomics features were extracted from thermal images of the thyroid, and unsupervised feature selection techniques including Principal Component Analysis (PCA), Independent Component Analysis (ICA), and variance thresholding were employed to reduce the dimensionality of the feature set. It is important to acknowledge that the field of radiomics analysis in thermography thyroid images is still emerging, and further research is required to validate the clinical usefulness of these features. Nevertheless, radiomics analysis holds significant potential to enhance the assessment of thermography thyroid images and provide valuable insights into thyroid function and pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. González, J.R., et al.: Analysis of static and dynamic infrared images for thyroid nodules investigation. In: 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), pp. 1–7. IEEE (2019)

    Google Scholar 

  2. Bomeli, S.R., LeBeau, S.O., Ferris, R.L.: Evaluation of a thyroid nodule. Otolaryngol. Clin. North Am. 43(2), 229–238 (2010). https://doi.org/10.1016/j.otc.2010.01.002

    Article  Google Scholar 

  3. Nguyen, Q.T., Lee, E.J., Huang, M.G., Park, Y.I., Khullar, A., Plodkowski, R.A.: Diagnosis and treatment of patients with thyroid cancer. Am. Health Drug Benefits 8(1), 30 (2015)

    Google Scholar 

  4. Haugen, B.R., et al.: 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1), 1–133 (2016). https://doi.org/10.1089/thy.2015.0020

    Article  MathSciNet  Google Scholar 

  5. Hegedüs, L.: The thyroid nodule. N. Engl. J. Med. 351(17), 1764–1771 (2004). https://doi.org/10.1056/NEJMcp031436

    Article  Google Scholar 

  6. Bull, J.A., Mech, F., Quaiser, T., Waters, S.L., Byrne, H.M.: Mathematical modelling reveals cellular dynamics within tumour spheroids. PLoS Comput. Biol. 16(8), e1007961 (2020). https://doi.org/10.1371/journal.pcbi.1007961

    Article  Google Scholar 

  7. Nixon, I.J., et al.: Metastasis to the thyroid gland: a critical review. Ann. Surg. Oncol. 24, 1533–1539 (2017)

    Article  Google Scholar 

  8. Szczurek, E., Krüger, T., Klink, B., Beerenwinkel, N.: A mathematical model of the metastatic bottleneck predicts patient outcome and response to cancer treatment. PLoS Comput. Biol. 16(10), e1008056 (2020)

    Article  Google Scholar 

  9. Tan, R.Z., Chiam, K.-H.: A computational model for how cells choose temporal or spatial sensing during chemotaxis. PLoS Comput. Biol. 14(3), e1005966 (2018). https://doi.org/10.1371/journal.pcbi.1005966

    Article  Google Scholar 

  10. Damião, C.P., et al.: Application of thermography in the diagnostic investigation of thyroid nodules. Endocr. J. 68(5), 573–581 (2021). https://doi.org/10.1507/endocrj.EJ20-0541

    Article  Google Scholar 

  11. Lee, M.-Y., Yang, C.-S.: Entropy-based feature extraction and decision tree induction for breast cancer diagnosis with standardized thermograph images. Comput. Methods Prog. Biomed. 100(3), 269–282 (2010). https://doi.org/10.1016/j.cmpb.2010.04.014

    Article  Google Scholar 

  12. Moran, M.B., et al.: Identification of thyroid nodules in infrared images by convolutional neural networks. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2018)

    Google Scholar 

  13. Moran, M.B.H., Conci, A., dos Santos Araújo, A.: Evaluation of quantitative features and convolutional neural networks for nodule identification in thyroid thermographies. In: 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 747–751. IEEE (2019)

    Google Scholar 

  14. Figueiredo, A.A.A., do Nascimento, J.G., Malheiros, F.C., da Silva Ignacio, L.H., Fernandes, H.C., Guimaraes, G.: Breast tumor localization using skin surface temperatures from a 2D anatomic model without knowledge of the thermophysical properties. Comput. Methods Prog. Biomed. 172, 65–77 (2019). https://doi.org/10.1016/j.cmpb.2019.02.004

  15. Ring, E., Ammer, K.: Infrared thermal imaging in medicine. Physiol. Meas. 33(3), R33 (2012). https://doi.org/10.1088/0967-3334/33/3/R33

    Article  Google Scholar 

  16. Silva, T.A.E.d., Silva, L.F.d., Muchaluat-Saade, D.C., Conci, A.: A computational method to assist the diagnosis of breast disease using dynamic thermography. Sensors 20(14), 3866 (2020). https://doi.org/10.3390/s20143866

  17. González, J.R., et al.: A computational study on the role of parameters for identification of thyroid nodules by infrared images (and comparison with real data). Sensors 21(13), 4459 (2021). https://doi.org/10.3390/s21134459

    Article  Google Scholar 

  18. Ring, E.: The historical development of thermometry and thermal imaging in medicine. J. Med. Eng. Technol. 30(4), 192–198 (2006). https://doi.org/10.1080/03091900600711332

    Article  Google Scholar 

  19. Villa, E., Arteaga-Marrero, N., Ruiz-Alzola, J.: Performance assessment of low-cost thermal cameras for medical applications. Sensors 20(5), 1321 (2020). https://doi.org/10.3390/s20051321

    Article  Google Scholar 

  20. Collison, S.: Artificial Intelligence based breast thermography using radiomic feature extraction versus conventional manual interpretation of breast thermograms in the prediction of breast cancer: a multi-reader study. medRxiv, p. 2023.01.31.23285320 (2023). https://doi.org/10.1101/2023.01.31.23285320

  21. Samuels, B.I.: Thermography: a valuable tool in the detection of thyroid disease. Radiology 102(1), 59–62 (1972). https://doi.org/10.1148/102.1.59

    Article  MathSciNet  Google Scholar 

  22. Gonzalez, J., et al.: An approach for thyroid nodule analysis using thermographic images. In: Application of Infrared to Biomedical Sciences, pp. 451–475 (2017)

    Google Scholar 

  23. Vardasca, R.: A case study on dynamic thermal imaging evaluation of a thyroid nodule (2019)

    Google Scholar 

  24. Bahramian, F., Mojra, A.: Thyroid cancer estimation using infrared thermography data. Infrared Phys. Technol. 104, 103126 (2020). https://doi.org/10.1016/j.infrared.2019.103126

    Article  Google Scholar 

  25. Damião, C., et al.: On the possibility of using temperature to aid in thyroid nodule investigation. Sci. Rep. 10(1), 21010 (2020)

    Article  Google Scholar 

  26. de Camargo, V.M.B., Ulbricht, L., Coninck, J.C.P., Ripka, W.L., Gamba, H.R.: Thermography as an aid for the complementary diagnosis of nodules in the thyroid gland. Biomed. Eng. Online 21(1), 1–15 (2022)

    Article  Google Scholar 

  27. González, F.J., González, R., Rios, J., Rodríguez, E., Milián, X.: Thermal interpretation procedure for the adjunct detection of thyroid pathologies. In: Medical Imaging 2021: Physics of Medical Imaging, vol. 11595, pp. 1363–1368. SPIE (2021)

    Google Scholar 

  28. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979). https://doi.org/10.1109/PROC.1979.11328

    Article  Google Scholar 

  29. Mayerhoefer, M.E., et al.: Introduction to radiomics. J. Nucl. Med. 61(4), 488–495 (2020). https://doi.org/10.2967/jnumed.118.222893

    Article  Google Scholar 

  30. Galloway, M.M.: Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4(2), 172–179 (1975). https://doi.org/10.1016/S0146-664X(75)80008-6

    Article  Google Scholar 

  31. Thibault, G., Angulo, J., Meyer, F.: Advanced statistical matrices for texture characterization: application to cell classification. IEEE Trans. Biomed. Eng. 61(3), 630–637 (2013). https://doi.org/10.1109/TBME.2013.2284600

    Article  Google Scholar 

  32. Amadasun, M., King, R.: Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19(5), 1264–1274 (1989). https://doi.org/10.1109/21.44046

    Article  Google Scholar 

  33. Database and Images: Infrared Image for the Diagnosis of Thyroid Nodules. http://visual.ic.uff.br/en/thyroid/

Download references

Acknowledgments

We would like to express our gratitude to Prof. Conci Aura and her team in Endocrinology and Surgery departments at the Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, for providing us with the images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddie Y. K. Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Etehadtavakol, M., Sirati-Amsheh, M., Ng, E.Y.K. (2023). Radiomics Feature Selection from Thyroid Thermal Images to Improve Thyroid Nodules Interpretations. In: Kakileti, S.T., Manjunath, G., Schwartz, R.G., Frangi, A.F. (eds) Artificial Intelligence over Infrared Images for Medical Applications. AIIIMA 2023. Lecture Notes in Computer Science, vol 14298. Springer, Cham. https://doi.org/10.1007/978-3-031-44511-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44511-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45657-2

  • Online ISBN: 978-3-031-44511-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation