Bayesian Optimization for Function Compositions with Applications to Dynamic Pricing

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14286))

Included in the following conference series:

Abstract

Bayesian Optimization (BO) is used to find the global optima of black box functions. In this work, we propose a practical BO method of function compositions where the form of the composition is known but the constituent functions are expensive to evaluate. By assuming an independent Gaussian process (GP) model for each of the constituent black-box function, we propose Expected Improvement (EI) and Upper Confidence Bound (UCB) based BO algorithms and demonstrate their ability to outperform not just vanilla BO but also the current state-of-art algorithms. We demonstrate a novel application of the proposed methods to dynamic pricing in revenue management when the underlying demand function is expensive to evaluate.

Prabuchandran K.J. was supported by the Science and Engineering Board (SERB), Department of Science and Technology, Government of India for the startup research grant ‘SRG/2021/000048’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Astudillo, R., Frazier, P.: Bayesian optimization of composite functions. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 354–363. PMLR (2019)

    Google Scholar 

  2. Babaioff, M., Dughmi, S., Kleinberg, R., Slivkins, A.: Dynamic pricing with limited supply. ACM Trans. Econ. Comput. 3(1), 1–26 (2015)

    Article  MathSciNet  Google Scholar 

  3. Balandat, M., et al.: BoTorch: a framework for efficient Monte-Carlo Bayesian optimization. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  4. Barber, R.F., Sidky, E.Y.: MOCCA: mirrored convex/concave optimization for nonconvex composite functions. J. Mach. Learn. Res. 17(144), 1–51 (2016)

    MathSciNet  MATH  Google Scholar 

  5. den Boer, A.V., Zwart, B.: Simultaneously learning and optimizing using controlled variance pricing. Manage. Sci. 60(3), 770–783 (2014)

    Article  Google Scholar 

  6. den Boer, A.V., Zwart, B.: Dynamic pricing and learning with finite inventories. Oper. Res. 63(4), 965–978 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brochu, E., Cora, V.M., de Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning (2010)

    Google Scholar 

  8. Broder, J., Rusmevichientong, P.: Dynamic pricing under a general parametric choice model. Oper. Res. 60(4), 965–980 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candelieri, A.: A gentle introduction to Bayesian optimization. In: 2021 Winter Simulation Conference (WSC), pp. 1–16 (2021)

    Google Scholar 

  10. Chen, Y.M., Jain, D.C.: Dynamic monopoly pricing under a Poisson-type uncertain demand. J. Bus. 65(4), 593–614 (1992)

    Article  Google Scholar 

  11. Cheung, W.C., Simchi-Levi, D., Wang, H.: Technical note—dynamic pricing and demand learning with limited price experimentation. Oper. Res. 65(6), 1722–1731 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crapis, D., Ifrach, B., Maglaras, C., Scarsini, M.: Monopoly pricing in the presence of social learning. Manage. Sci. 63(11), 3586–3608 (2017)

    Article  Google Scholar 

  13. den Boer, A.V.: Dynamic pricing and learning: historical origins, current research, and new directions. Surv. Oper. Res. Manage. Sci. 20(1), 1–18 (2015)

    MathSciNet  Google Scholar 

  14. Drusvyatskiy, D., Paquette, C.: Efficiency of minimizing compositions of convex functions and smooth maps. Math. Program. 178(1–2), 503–558 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Elreedy, D.F., Atiya, A.I., Shaheen, S.: A novel active learning regression framework for balancing the exploration-exploitation trade-off. Entropy 21(7), 651 (2019)

    Article  MathSciNet  Google Scholar 

  16. Frazier, P.I.: A tutorial on Bayesian optimization (2018)

    Google Scholar 

  17. Harrison, J.M., Keskin, N.B., Zeevi, A.: Bayesian dynamic pricing policies: learning and earning under a binary prior distribution. Manage. Sci. 58(3), 570–586 (2012)

    Article  Google Scholar 

  18. Injadat, M., Salo, F., Nassif, A.B., Essex, A., Shami, A.: Bayesian optimization with machine learning algorithms towards anomaly detection. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2018)

    Google Scholar 

  19. Kuo, C.W., Ahn, H.S., Aydin, G.: Dynamic pricing of limited inventories when customers negotiate. Oper. Res. 59(4), 882–897 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maddox, W., Balandat, M., Wilson, A.G., Bakshy, E.: Bayesian optimization with high-dimensional outputs. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  21. Phillips, R.L.: Pricing and Revenue Optimization. Stanford University Press (2021)

    Google Scholar 

  22. Pyzer-Knapp, E.O.: Bayesian optimization for accelerated drug discovery. IBM J. Res. Dev. 62(6), 2:1–2:7 (2018)

    Google Scholar 

  23. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press (2005)

    Google Scholar 

  24. Scotto Di Perrotolo, A.: A theoretical framework for bayesian optimization convergence. Master’s thesis, KTH, Optimization and Systems Theory (2018)

    Google Scholar 

  25. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012)

    Google Scholar 

  26. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds for gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory 58(5), 3250–3265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Surjanovic, S., Bingham, D.: Virtual library of simulation experiments: test functions and datasets. https://www.sfu.ca/~ssurjano. Accessed 7 Feb 2023

  28. Woodworth, B.E., Srebro, N.: Tight complexity bounds for optimizing composite objectives. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates, Inc. (2016)

    Google Scholar 

  29. Wu, J., Chen, X.Y., Zhang, H., **ong, L.D., Lei, H., Deng, S.H.: Hyperparameter optimization for machine learning models based on Bayesian optimization. J. Electron. Sci. Technol. 17(1), 26–40 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, K., Prabuchandran, K.J., Bodas, T. (2023). Bayesian Optimization for Function Compositions with Applications to Dynamic Pricing. In: Sellmann, M., Tierney, K. (eds) Learning and Intelligent Optimization. LION 2023. Lecture Notes in Computer Science, vol 14286. Springer, Cham. https://doi.org/10.1007/978-3-031-44505-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44505-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44504-0

  • Online ISBN: 978-3-031-44505-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation