Embryo Temperature Has Knock-on Effects on Later Traits in Salmonid Fishes

  • Chapter
  • First Online:
Advances in the Ecology of Stream-Dwelling Salmonids

Part of the book series: Fish & Fisheries Series ((FIFI,volume 44))

  • 143 Accesses

Abstract

Through a phenotypic plastic response, early temperatures have knock-on effects on later appearing traits of organisms such as stream-spawning salmonids. Moderately warmer water during embryonic development has carry-over effects to later develo** life history characters such as body shape, metabolic rate, growth rate, egg and gonad sizes. Also, adult size and time of the spawning migration may be affected by temperatures experienced at the embryo stage. These responses to early temperature may be regulated by epigenetic mechanisms, such as DNA methylation. The plasticity may be favourable for invasive organisms and for those living in changing habitats and climates. It has been hypothesized that over time, this plasticity may lead to speciation. Research on these early knock-on effects of early temperature is still in its youth, but is rapidly growing, and at the end of the review, issues for future research are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerly KL, Ward AB (2016) How temperature-induced variation in musculoskeletal anatomy affects escape performance and survival of zebrafish (Danio rerio). J Exp Zool A 325:25–40

    Article  Google Scholar 

  • Ahn D (1999) Axial variation in three-spine stickleback: genetic and environmental factors. Evol Dev 1:100–112

    Article  CAS  PubMed  Google Scholar 

  • Álvarez D, Can JM, Nicieza AG (2006) Microgeographic variation in metabolic rate and energy storage of brown trout: countergradient selection or thermal sensitivity? Evol Ecol 20:345–363

    Article  Google Scholar 

  • Anastasiadi D, Diaz N, Piferrer F (2017) Small ocean temperature increases elicit stage-dependent changes in DNA methylation and gene expression in a fish, the European sea bass. Sci Rep 7:12401

    Article  PubMed  PubMed Central  Google Scholar 

  • Aquirre WE, Young A, Navarrete-Amaya R et al (2019) Vertebral number covaries with body form and elevation along the western slopes of Ecuadorian Andes in the Neotropical fish genus Rhoadsia (Teleostei: Characidae). Biol J Linn Soc 126:706–720

    Article  Google Scholar 

  • Ardura A, Clusa L, Zaiko A et al (2018) Stress related epigenetic changes may explain opportunistic success in biological invasions in antipode mussels. Sci Rep 8:10793

    Article  PubMed  PubMed Central  Google Scholar 

  • Banta JA, Richards CL (2018) Quantitative epigenetics and evolution. Heredity 121:210–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateson P, Baker T, Clutton-Brock T et al (2004) Developmental plasticity and human health. Nature 430:419–421

    Article  CAS  PubMed  Google Scholar 

  • Bateson P, Gluckman P, Hanson M (2014) The biology of developmental plasticity and the predictive adaptive response hypothesis. J Physiol 592:2357–2368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum D, Laughton R, Armstrong JD et al (2005) The effect of temperature on growth and early maturation in a wild population of Atlantic salmon parr. J Fish Biol 67:1370–1380

    Article  Google Scholar 

  • Billerbeck JM, Orti G, Conover DO (1997) Latitudinal variation in vertebral number has a genetic basis in the Atlantic silverside, Menidia menidia. Can J Fish Aquat Sci 54:1796–1801

    Article  Google Scholar 

  • Bollati V, Baccarelli A (2010) Environmental epigenetics. Heredity 105:105–112

    Article  CAS  PubMed  Google Scholar 

  • Booth DT (2006) Influence of incubation temperature on hatchling phenotype in reptiles. Physiol Biochem Zool 79:274–281

    Article  PubMed  Google Scholar 

  • Booth DT (2018) Incubation temperature induced phenotypic plasticity in oviparous reptiles: Where to next? J Exp Zool A 329:343–350

    Article  Google Scholar 

  • Burgerhout E, Mommens M, Johansen H et al (2017) Genetic background and embryonic temperature affect DNA methylation and expression of myogenin and muscle development in Atlantic salmon (Salmo salar). PLoS One 12:e0179918

    Article  PubMed  PubMed Central  Google Scholar 

  • Carballo C, Firmino J, Anjos L et al (2018) Short- and long-term effects on growth and expression patterns in response to incubation temperatures in Senegal sole. Aquaculture 495:222–231

    Article  Google Scholar 

  • Conover DO, Present TMC (1990) Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes. Oecologia 83:316–324

    Article  PubMed  Google Scholar 

  • Conover D, Schultz E (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol Evol 10:248–252

    Article  CAS  PubMed  Google Scholar 

  • Cook CJ, Wilson CC, Burness G (2018) Impacts of environmental matching on the routine metabolic rate and mass of native and mixed-ancestry brook trout (Salvelinus fontinalis) fry. Cons Physiol 6:coy023

    Google Scholar 

  • Corral WDR, Aquirre WE (2019) Effects of temperature and water turbulence on vertebral number and body shape in Astyanax mexicanus (Teleostei, Characidae). PLoS One 14:e0219677

    Article  Google Scholar 

  • Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431

    Article  PubMed  Google Scholar 

  • Durtsche RD, Jonsson B, Greenberg LA (2021) Thermal conditions during embryogenesis influence metabolicrates of juvenile brown trout Salmo trutta. Ecosphere 12:e03374

    Article  Google Scholar 

  • Einum S, Hendry AP, Fleming IA (2002) Egg-size evolution in aquatic environments: does oxygen availability constrain size? Proc R Soc B 269:2325–2330

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliott JM (1994) Quantitative ecology and the brown trout. Oxford series in ecology and evolution. Oxford University Press, Oxford

    Book  Google Scholar 

  • Fan X, Hou T, Sun T et al (2019) Starvation stress affects the maternal development and larval fitness in zebrafish (Danio rerio). Sci Total Environ 695:133897

    Article  CAS  PubMed  Google Scholar 

  • Finstad AG, Jonsson B (2012) Effect of incubation temperature on growth performance in Atlantic salmon. Mar Ecol Progr Ser 454:75–82

    Article  Google Scholar 

  • Fleming IA, Gross MR (1990) Latitudinal clines: a trade-off between egg number and size in Pacific salmon. Ecology 71:1–11

    Article  Google Scholar 

  • Flores KB, Wolschin F, Amdam GV (2013) The role of methylation of DNA in environmental adaptation. Integr Comp Biol 53:359–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forseth T, Larsson S, Jensen AJ et al (2009) Thermal performance of juvenile brown trout, Salmo trutta L.: no support for thermal adaptation hypotheses. J Fish Biol 74:133–149

    Article  CAS  PubMed  Google Scholar 

  • Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution. Facts and concepts. Philos Trans R Soc B 365:1547–1556

    Article  Google Scholar 

  • Ghalambor HK, McKay JK, Carroll SP et al (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Article  Google Scholar 

  • Greenberg L, Jonsson B, Norrgård J et al (2021) Body and fin shape in juvenile Atlantic salmon, Salmo salar: effects of temperature during embryogenesis. Can J Zool 99:381–389

    Article  CAS  Google Scholar 

  • Hindar K, Jonsson B (1993) Ecological polymorphism in Arctic charr. Biol J Linn Soc 8:63–74

    Article  Google Scholar 

  • IPCC (2013) In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, **a Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Johannsen W (1911) The genotype conception of heredity. Am Nat 45:129–159

    Article  Google Scholar 

  • Johnston IA (2006) Environment and plasticity of myogenesis in teleost fish. J Exp Biol 209:2249–2264

    Article  CAS  PubMed  Google Scholar 

  • Jonsson N, Jonsson B (1999) Trade-off between egg size and numbers in brown trout. J Fish Biol 55:767–783

    Google Scholar 

  • Jonsson B, Jonsson N (2011) Ecology of Atlantic salmon and brown trout: habitat as a template for life histories. Fish and Fisheries Series 33. Springer, Dordrecht

    Google Scholar 

  • Jonsson B, Jonsson N (2016) Trans-generational maternal effect: temperature influences egg size of the offspring in Atlantic salmon Salmo salar. J Fish Biol 89:1482–1489

    Article  CAS  PubMed  Google Scholar 

  • Jonsson B, Jonsson N (2018) Egg incubation temperature affects the timing of the Atlantic salmon Salmo salar homing migration. J Fish Biol 93:1016–1020

    Article  PubMed  Google Scholar 

  • Jonsson B, Jonsson N (2019) Phenotypic plasticity and epigenetics of fish: embryo temperature affects later develo** traits. Aquat Biol 28:21–32

    Article  Google Scholar 

  • Jonsson B, Jonsson N (2021) Differences in growth between offspring of anadromous and freshwater brown trout Salmo trutta. J Fish Biol. 99:18-24. https://doi.org/10.1111/jfb.14673

  • Jonsson N, Jonsson B, Fleming IA (1996) Does early growth rate cause a phenotypically plastic response in egg production of Atlantic salmon? Funct Ecol 10:89–96

    Article  Google Scholar 

  • Jonsson B, Forseth T, Jensen AJ et al (2001) Thermal performance in juvenile Atlantic salmon, Salmo salar L. Funct Ecol 15:701–711

    Article  Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (2005) Does climate during embryonic development influences parr growth and age of seaward migration in Atlantic salmon (Salmo salar) smolts? Can J Fish Aquat Sci 62:2502–2508

    Article  Google Scholar 

  • Jonsson B, Jonsson N, Finstad AG (2014) Linking embryonic temperature with adult reproductive investment. Mar Ecol Progr Ser 515:217–226

    Article  Google Scholar 

  • Kingsolver JG, Buckley LB (2017) Quantifying thermal extremes and biological variation to predict evolutionary responses to changing climate. Philos Trans R Soc B 372:20160147

    Article  Google Scholar 

  • L’Abée-Lund JH, Jonsson B, Jensen AJ et al (1989) Latitudinal variation in life history characteristics of sea-run migrant brown trout Salmo trutta. J Anim Ecol 58:525–542

    Article  Google Scholar 

  • Lafuente E, Beldade P (2019) Genomics of developmental plasticity in animals. Front Genet 10:720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Luyer J, Laporte M, Beacham TD et al (2017) Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon. Proc Natl Acad Sci U S A 114:12964–12969

    Article  PubMed  PubMed Central  Google Scholar 

  • Levins R (1969) Thermal acclimation and heat resistance in Drosophila species. Am Nat 103:483–499

    Article  Google Scholar 

  • Levis NA, Pfennig DW (2016) Evaluating ‘plasticity-first’ evolution in nature: key criteria and empirical approaches. Trends Ecol Evol 31:563–574

    Article  PubMed  Google Scholar 

  • Mangel M (2003) Environment and longevity: The demography of the growth rate. In: Carey JR, Tuljapurkar S (eds) Life span: evolutionary, ecological, and demographic perspectives. Supplement to population and development review 29. Population Council, New York

    Google Scholar 

  • McBride RS, Horodysky AZ (2004) Mechanisms maintaining sympatric distributions of two ladyfish (Elopidae: Elops) morphs in the Gulf of Mexico and western North Atlantic Ocean. Limnol Oceanogr 49:1173–1181

    Article  Google Scholar 

  • McDowall RM (2003) Variation in vertebral number in galaxiid fishes (Teleostei: Galaxiidae): a legacy of life history, latitude and length. Environ Biol Fish 66:361–381

    Article  Google Scholar 

  • McDowall RM (2008) Jordan’s and other ecogeographical rules, and vertebral number in fishes. J Biogeogr 35:501–508

    Article  Google Scholar 

  • Merilä J, Hendry AP (2014) Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol Appl 7:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Metcalfe NB, Monaghan P (2003) Growth versus lifespan: perspectives from evolutionary ecology. Exp Gerontol 38:935–940

    Article  PubMed  Google Scholar 

  • Metcalfe NB, Thorpe JE (1990) Determinants of geographical variation in the age of seaward-migrating salmon, Salmo salar. J Anim Ecol 59:135–145

    Article  Google Scholar 

  • Morán P, Marco-Rius F, Megías M et al (2013) Environmental induced methylation changes associated with seawater adaptation in brown trout. Aquaculture 392–395:77–83

    Article  Google Scholar 

  • Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407

    Article  CAS  PubMed  Google Scholar 

  • Nathanailides C, Stickland NC, Lopez-Albors O (1995) Influence of prehatch temperature on the development of muscle cellularity in posthatch Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 52:675–680

    Article  Google Scholar 

  • Nijhout HF, Sadre-Marandi F, Best J et al (2017) Systems biology of phenotypic robustness and plasticity. Integr Comp Biol 57:171–184

    Article  CAS  PubMed  Google Scholar 

  • O’Steen S, Janzen FJ (1999) Embryonic temperature affects metabolic compensation and thyroid hormones in hatchling snap** turtles. Physiol Biochem Zool Ecol Evol Appr 72:520–533

    Article  Google Scholar 

  • Ostrovsky L (1995) The parabolic pattern of animal growth: determination of equation parameters and their temperature dependencies. Freshw Biol 33(3):357–371. 10.1111/fwb.1995.33.issue-3. https://doi.org/10.1111/j.1365-2427.1995.tb00398.x

    Article  Google Scholar 

  • Pried IG (1985) Metabolic scopes in fishes. In: Tytles P, Calow P (eds) Fish energetics: new perspectives. Croom Helm, London

    Google Scholar 

  • Salinas S, Munch SB (2012) Thermal legacies: transgenerational effects of temperature on growth in a vertebrate. Ecol Lett 15:159–163

    Article  PubMed  Google Scholar 

  • Schmid M, Guillume F (2017) The role of phenotypic plasticity on population differentiation. Heredity 119:214–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott GR, Johnston IA (2012) Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish. Proc Natl Acad Sci U S A 109:14247–14252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sfakianakis DG, Leris I, Kentouri M (2011) Effect of developmental temperature on swimming performance of zebrafish (Danio rerio) juveniles. Environ Biol Fish 90:421–427

    Article  Google Scholar 

  • Singh SK, Das D, Rhen T (2020) Embryo temperature programs phenotypes in reptiles. Front Physiol 11:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siviter H, Deeming DC, Wilkinson A (2019) Egg incubation temperature influences the growth and foraging behaviour of juvenile lizards. Behav Process 165:9–13

    Article  Google Scholar 

  • Steinbacher P, Wanzenböck J, Brandauer M et al (2017) Thermal experience during embryogenesis contributes to the induction of dwarfism in whitefish Coregonus lavaretus. PLoS One 12:e0185384

    Article  PubMed  PubMed Central  Google Scholar 

  • Steyermark AC, Spotila RJ (2000) Effects of maternal identity and incubation temperature on snap** turtle (Chelydra serpentina) metabolism. Physiol Biochem Zool 73:298–306

    Article  CAS  PubMed  Google Scholar 

  • Stickland NC, White RN, Mescall PE et al (1988) The effect of temperature on myogenesis in embryonic development of the Atlantic salmon (Salmo salar L.). Anat Embryol 178:323–333

    Article  Google Scholar 

  • Sundt-Hansen L, Neregård L, Einum S et al (2009) Growth enhanced brown trout show increased movement activity in the wild. Funct Ecol 23:551–558

    Article  Google Scholar 

  • Swain DP (1992) Selective predation for vertebral phenotypes in Gasterosteus aculeatus: reversal in the directions of selection at different larval sizes. Evolution 46:998–1013

    PubMed  Google Scholar 

  • Tåning ÅV (1952) Experimental study of meristic characters in fishes. Biol Rev Camb Philos Soc 27:1–191

    Article  Google Scholar 

  • Taylor EN, Diele-Viegas L, Gangloff EJ et al (2021) The thermal ecology and physiology of reptiles and amphibians: a user’s guide. J Exp Zool A. 335:13-44. https://doi.org/10.1002/jez.2396

  • Varriale A, Bernardi G (2006) DNA methylation and body temperature in fishes. Gene 385:111–121

    Article  CAS  PubMed  Google Scholar 

  • Venney CJ, Love OP, Drown EJ et al (2019) DNA methylation profiles suggest intergenerational transfer of maternal effects. Mol Biol Evol 37:540–548

    Article  Google Scholar 

  • Verhoeven KJF, Vonholdt BM, Sork VL (2016) Epigenetics in ecology and evolution: what we know and what we need to know. Mol Ecol 25:1631–1638

    Article  PubMed  Google Scholar 

  • Verrale A (2014) DNA methylation, epigenetics, and evolution in vertebrates: facts and challenges. Int J Evol Biol 2014:475981

    Google Scholar 

  • Vogt G (2017) Facilitation of environmental adaptation and evolution by epigenetic phenotype variation: insights from clonal, invasive, polyploid, and domesticated animals. Environ Epigen 3:dvx002

    Article  Google Scholar 

  • Wang SP, Althoff DM (2019) Phenotypic plasticity facilitates initial colonization of a novel environment. Evolution 73:303–316

    Article  CAS  PubMed  Google Scholar 

  • Warner DA, Woo KL, van Dyk DA et al (2010) Egg incubation temperature affects male reproductive success but not display behaviors in lizards. Behav Ecol Sociobiol 64:803–813

    Article  Google Scholar 

  • Webb PW (1984) Form and function in fish swimming. Sci Am 251:72–83

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford Univ Press, Oxford

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jonsson, B. (2024). Embryo Temperature Has Knock-on Effects on Later Traits in Salmonid Fishes. In: Lobon-Cervia, J., Budy, P., Gresswell, R. (eds) Advances in the Ecology of Stream-Dwelling Salmonids. Fish & Fisheries Series, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-031-44389-3_1

Download citation

Publish with us

Policies and ethics

Navigation