BF-Net: A Fine-Grained Network for Identify Bacterial and Fungal Keratitis

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14257))

Included in the following conference series:

  • 866 Accesses

Abstract

Infectious keratitis is the leading cause of blindness in the word where bacteria keratitis (BK) and fungi keratitis (FK) are common causes of infection. As an ophthalmic emergency, BK and FK need to be treated correctly as soon as possible to prevent irrecoverable damage to vision, but the early correct diagnosis between them is challenging. Some research have shown that even trained ophthalmologists have less than 80% accuracy in correctly diagnosing FK from BK. In this paper, a Fine-Grained model called BF-Net is proposed to improve the accuracy of automatic diagnosis of keratitis, with consideration of the characteristics of keratitis images. We build a keratitis dataset containing 1433 Slit-Lamp images of BK or FK from 458 patients and conducted detailed experiments to prove the effectiveness of our method. The Precision, Recall, Accuracy, AUC and F1 score of our method are 82.34%, 87.20%, 83.12%, 0.85 and 0.85 respectively, which has achieved the best effect compared with other classification methods. Furthermore, visualization technique Grad-CAM++ is used to provide interpretability for the validity of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cabrera-Aguas, M., Khoo, P., Watson, S.L.: Infectious keratitis: a review. Clin. Exp. Ophthalmol. 50(5), 543–562 (2022)

    Article  Google Scholar 

  2. Durand, M.L., Barshak, M.B., Chodosh, J.: Infectious keratitis in 2021. JAMA 326(13), 1319–1320 (2021)

    Article  Google Scholar 

  3. Ibrahim, Y.W., Boase, D.L., Cree, I.A.: Epidemiological characteristics, predisposing factors and microbiological profiles of infectious corneal ulcers: the portsmouth corneal ulcer study. Br. J. Ophthalmol. 93(10), 1319–1324 (2009)

    Article  Google Scholar 

  4. Dalmon, C., et al.: The clinical differentiation of bacterial and fungal keratitis: a photographic survey. Invest. Ophthalmol. Vis. Sci. 53(4), 1787–1791 (2012)

    Article  Google Scholar 

  5. Hung, N., et al.: Using slit-lamp images for deep learning-based identification of bacterial and fungal keratitis: model development and validation with different convolutional neural networks. Diagnostics 11(7), 1246 (2021)

    Article  Google Scholar 

  6. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  7. Xu, Y., et al.: Deep sequential feature learning in clinical image classification of infectious keratitis. Engineering 7(7), 1002–1010 (2021)

    Article  Google Scholar 

  8. Mayya, V., Kamath Shevgoor, S., Kulkarni, U., Hazarika, M., Barua, P.D., Acharya, U.R.: Multi-scale convolutional neural network for accurate corneal segmentation in early detection of fungal keratitis. J. Fungi 7(10), 850 (2021)

    Article  Google Scholar 

  9. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13001–13008 (2020)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  11. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 843–852 (2017)

    Google Scholar 

  12. Ying, X.: An overview of overfitting and its solutions. In: Journal of Physics: Conference Series, vol. 1168, p. 022022. IOP Publishing (2019)

    Google Scholar 

  13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Zhuang, P., Wang, Y., Qiao, Y.: Learning attentive pairwise interaction for fine-grained classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13130–13137 (2020)

    Google Scholar 

  16. Zhao, B., Feng, J., Wu, X., Yan, S.: A survey on deep learning-based fine-grained object classification and semantic segmentation. Int. J. Autom. Comput. 14(2), 119–135 (2017)

    Article  Google Scholar 

  17. Wang, Y., Morariu, V.I., Davis, L.S.: Learning a discriminative filter bank within a CNN for fine-grained recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4148–4157 (2018)

    Google Scholar 

  18. Yang, Z., Luo, T., Wang, D., Hu, Z., Gao, J., Wang, L.: Learning to navigate for fine-grained classification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 420–435 (2018)

    Google Scholar 

  19. Oh Song, H., **ang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted structured feature embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4004–4012 (2016)

    Google Scholar 

  20. Kaya, M., Bilge, H.Ş: Deep metric learning: a survey. Symmetry 11(9), 1066 (2019)

    Article  Google Scholar 

  21. Huang, S., Wang, X., Tao, D.: Stochastic partial swap: enhanced model generalization and interpretability for fine-grained recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 620–629 (2021)

    Google Scholar 

  22. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  24. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  25. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  26. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  27. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., **e, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

    Google Scholar 

  28. Hu, T., Qi, H., Huang, Q., Lu, Y.: See better before looking closer: weakly supervised data augmentation network for fine-grained visual classification. ar**v preprint ar**v:1901.09891 (2019)

  29. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847. IEEE (2018)

    Google Scholar 

  30. Kuo, M.T., et al.: A deep learning approach in diagnosing fungal keratitis based on corneal photographs. Sci. Rep. 10(1), 14424 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyou Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, K., Zhang, J., Jiang, X., Liu, J., Zhou, S. (2023). BF-Net: A Fine-Grained Network for Identify Bacterial and Fungal Keratitis. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14257. Springer, Cham. https://doi.org/10.1007/978-3-031-44216-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44216-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44215-5

  • Online ISBN: 978-3-031-44216-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation