Human Genetics of Tricuspid Atresia and Univentricular Heart

  • Chapter
  • First Online:
Congenital Heart Diseases: The Broken Heart

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1441))

  • 232 Accesses

Abstract

Tricuspid atresia (TA) is a rare congenital heart condition that presents with a complete absence of the right atrioventricular valve. Because of the rarity of familial and/or isolated cases of TA, little is known about the potential genetic abnormalities contributing to this condition. Potential responsible chromosomal abnormalities were identified in exploratory studies and include deletions in 22q11, 4q31, 8p23, and 3p as well as trisomies 13 and 18. In parallel, potential culprit genes include the ZFPM2, HEY2, NFATC1, NKX2-5, MYH6, and KLF13 genes. The aim of this chapter is to expose the genetic components that are potentially involved in the pathogenesis of TA in humans. The large variability in phenotypes and genotypes among cases of TA suggests a genetic network that involves many components yet to be unraveled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–900.

    Article  PubMed  Google Scholar 

  2. Grant JW. Congenital malformations of the tricuspid valve in siblings. Pediatr Cardiol. 1996;17:327–9.

    Article  CAS  PubMed  Google Scholar 

  3. Lin AE, Rosti L. Tricuspid atresia in sibs. J Med Genet. 1998;35:1055–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonnet D, Fermont L, Kachaner J, et al. Tricuspid atresia and conotruncal malformations in five families. J Med Genet. 1999;36:349–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rao PS. Consensus on timing of intervention for common congenital heart diseases: part II – cyanotic heart defects. Indian J Pediatr. 2013;80:663–74.

    Article  PubMed  Google Scholar 

  6. Rao PS. Consensus on timing of intervention for common congenital heart diseases: part I – acyanotic heart defects. Indian J Pediatr. 2013;80:32–8.

    Article  PubMed  Google Scholar 

  7. Benson DW, Basson CT, MacRae CA. New understandings in the genetics of congenital heart disease. Curr Opin Pediatr. 1996;8:505–11.

    Article  CAS  PubMed  Google Scholar 

  8. Fischer A, Klamt B, Schumacher N, et al. Phenotypic variability in Hey2 −/− mice and absence of HEY2 mutations in patients with congenital heart defects or Alagille syndrome. Mamm Genome. 2004;15:711–6.

    Article  CAS  PubMed  Google Scholar 

  9. El-Rassy I, Bou-Abdallah J, Al-Ghadban S, et al. Absence of NOTCH2 and Hey2 mutations in a familial Alagille syndrome case with a novel frameshift mutation in JAG1. Am J Med Genet A. 2008;146:937–9.

    Article  Google Scholar 

  10. Wirrig EE, Yutzey KE. Transcriptional regulation of heart valve development and disease. Cardiovasc Pathol. 2011;20:162–7.

    Article  CAS  PubMed  Google Scholar 

  11. Garry DJ, Olson EN. A common progenitor at the heart of development. Cell. 2006;127:1101–4.

    Article  CAS  PubMed  Google Scholar 

  12. Chakraborty S, Combs MD, Yutzey KE. Transcriptional regulation of heart valve progenitor cells. Pediatr Cardiol. 2010;31:414–21.

    Article  PubMed  Google Scholar 

  13. Vaughan CJ, Basson CT. Molecular determinants of atrial and ventricular septal defects and patent ductus arteriosus. Am J Med Genet. 2000;97:304–9.

    Article  CAS  PubMed  Google Scholar 

  14. Thiene G, Anderson RH. The clinical morphology of tricuspid atresia. Atresia of the right atrioventricular valve. G Ital Cardiol. 1981;11:1845–59.

    CAS  PubMed  Google Scholar 

  15. Hu P, Ji X, Yang C, et al. 22q11.2 microduplication in a family with recurrent fetal congenital heart disease. Eur J Med Genet. 2011;54:e433–6.

    Article  PubMed  Google Scholar 

  16. Alva C, David F, Hernandez M, et al. Tricuspid atresia associated with common arterial trunk and 22q11 chromosome deletion. Arch Cardiol Mex. 2003;73:271–4.

    PubMed  Google Scholar 

  17. Miller GA, Paneth M, Lennox SC. Surgical management of pulmonary atresia with intact ventricular septum in first month of life. Br Heart J. 1973;35:554.

    Article  CAS  PubMed  Google Scholar 

  18. Trost D, Engels H, Bauriedel G, et al. Congenital cardiovascular malformations and chromosome microdeletions in 22q11.2. Dtsch Med Wochenschr. 1999;124:3–7.

    Article  CAS  PubMed  Google Scholar 

  19. Lizarraga MA, Mintegui S, Sanchez Echaniz J, et al. Heart malformations in trisomy 13 and trisomy 18. Rev Esp Cardiol. 1991;44:605–10.

    CAS  PubMed  Google Scholar 

  20. Yu CW, Chen H, Baucum RW, et al. Terminal deletion of the long arm of chromosome 4. Report of a case of 46, XY, del(4)(q31) and review of 4q- syndrome. Ann Genet. 1981;24:158–61.

    CAS  PubMed  Google Scholar 

  21. Brand A, Reifen RM, Armon Y, et al. Double mitral valve, complete atrioventricular canal, and tricuspid atresia in chromosomal 3P-syndrome. Pediatr Cardiol. 1987;8:55–6.

    Article  CAS  PubMed  Google Scholar 

  22. Wat MJ, Shchelochkov OA, Holder AM, et al. Chromosome 8p23.1 deletions as a cause of complex congenital heart defects and diaphragmatic hernia. Am J Med Genet A. 2009;149A:1661–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wald RM, Tham EB, McCrindle BW, Goff DA, McAuliffe FM, Golding F, Jaeggi ET, Hornberger LK, Tworetzky W, Nield LE. Outcome after prenatal diagnosis of tricuspid atresia: a multicenter experience. Am Heart J. 2007;153(5):772–8. https://doi.org/10.1016/j.ahj.2007.02.030. PMID: 17452152

    Article  PubMed  Google Scholar 

  24. Morton SU, Quiat D, Seidman JG, Seidman CE. Genomic frontiers in congenital heart disease. Nat Rev Cardiol. 2021;19(1):26–42. https://doi.org/10.1038/s41569-021-00587-4. Epub ahead of print. PMID: 34272501

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hoggard, JA. Discovering pathogenic variants associated with tricuspid atresia through whole exome sequencing. Diss. 2019

    Google Scholar 

  26. Tevosian SG, Deconinck AE, Tanaka M, et al. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell. 2000;101:729–39.

    Article  CAS  PubMed  Google Scholar 

  27. Lu JR, McKinsey TA, Xu H, et al. FOG-2, a heart- and brain-enriched cofactor for GATA transcription factors. Mol Cell Biol. 1999;19:4495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Svensson EC, Huggins GS, Dardik FB, et al. A functionally conserved N-terminal domain of the friend of GATA-2 (FOG-2) protein represses GATA4-dependent transcription. J Biol Chem. 2000;275:20762–9.

    Article  CAS  PubMed  Google Scholar 

  29. Svensson EC, Huggins GS, Lin H, Clendenin C, Jiang F, Tufts R, Dardik FB, Leiden JM. A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding fog-2. Nat Genet. 2000;25(3):353–6. https://doi.org/10.1038/77146. PMID: 10888889

    Article  CAS  PubMed  Google Scholar 

  30. Sarkozy A, Conti E, D’Agostino R, et al. ZFPM2/FOG2 and HEY2 genes analysis in nonsyndromic tricuspid atresia. Am J Med Genet A. 2005;133A:68–70.

    Article  PubMed  Google Scholar 

  31. Pizzuti A, Sarkozy A, Newton AL, et al. Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Hum Mutat. 2003;22:372–7.

    Article  CAS  PubMed  Google Scholar 

  32. Koibuchi N, Chin MT. CHF1/Hey2 plays a pivotal role in left ventricular maturation through suppression of ectopic atrial gene expression. Circ Res. 2007;100:850–5.

    Article  CAS  PubMed  Google Scholar 

  33. Fischer A, Schumacher N, Maier M, et al. The notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev. 2004;18:901–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reamon-Buettner SM, Borlak J. HEY2 mutations in malformed hearts. Hum Mutat. 2006;27:118.

    Article  PubMed  Google Scholar 

  35. Peng SL, Gerth AJ, Ranger AM, et al. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity. 2001;14:13–20.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou P, Sun LJ, Dotsch V, et al. Solution structure of the core NFATC1/DNA complex. Cell. 1998;92:687–96.

    Article  CAS  PubMed  Google Scholar 

  37. Ranger AM, Grusby MJ, Hodge MR, et al. The transcription factor NF-ATc is essential for cardiac valve formation. Nature. 1998;392:186–90.

    Article  CAS  PubMed  Google Scholar 

  38. Abdul-Sater Z, Yehya A, Beresian J, et al. Two heterozygous mutations in NFATC1 in a patient with tricuspid atresia. PLoS One. 2012;7:e49532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yehya A, Souki R, Bitar F, et al. Differential duplication of an intronic region in the NFATC1 gene in patients with congenital heart disease. Genome. 2006;49:1092–8.

    Article  CAS  PubMed  Google Scholar 

  40. Li B, Li T, Pu T, Liu C, Chen S, Sun K, Xu R. Genetic and functional analyses detect one pathological NFATC1 mutation in a Chinese tricuspid atresia family. Mol Genet Genomic Med. 2021;7:e1771. https://doi.org/10.1002/mgg3.1771. Epub ahead of print. PMID: 34363434

    Article  CAS  Google Scholar 

  41. Bruneau BG, Nemer G, Schmitt JP, et al. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 2001;106:709–21.

    Article  CAS  PubMed  Google Scholar 

  42. Stallmeyer B, Fenge H, Nowak-Gottl U, et al. Mutational spectrum in the cardiac transcription factor gene NKX2.5 (CSX) associated with congenital heart disease. Clin Genet. 2010;78:533–40.

    Article  CAS  PubMed  Google Scholar 

  43. Posch MG, Waldmuller S, Muller M, et al. Cardiac alpha-myosin (MYH6) is the predominant sarcomeric disease gene for familial atrial septal defects. PLoS One. 2011;6:e28872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Granados-Riveron JT, Ghosh TK, Pope M, et al. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum Mol Genet. 2010;19:4007–16.

    Article  CAS  PubMed  Google Scholar 

  45. Ching YH, Ghosh TK, Cross SJ, et al. Mutation in myosin heavy chain 6 causes atrial septal defect. Nat Genet. 2005;37:423–8.

    Article  CAS  PubMed  Google Scholar 

  46. Nemer M, Horb ME. KLF family of transcriptional regulators in cardiomyocyte proliferation and differentiation. Cell Cycle. 2007;6(2):117–21. https://doi.org/10.4161/cc.6.2.3718. Epub 2007 Jan 13. PMID: 17245133

    Article  CAS  PubMed  Google Scholar 

  47. Li W, Li B, Li T, Zhang E, Wang Q, Chen S, Sun K. Identification and analysis of KLF13 variants in patients with congenital heart disease. BMC Med Genet. 2020;21(1):78. https://doi.org/10.1186/s12881-020-01009-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Darwich R, Li W, Yamak A, Komati H, Andelfinger G, Sun K, Nemer M. KLF13 is a genetic modifier of the Holt-Oram syndrome gene TBX5. Hum Mol Genet. 2017;26(5):942–54. https://doi.org/10.1093/hmg/ddx009. PMID: 28164238

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Nemer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sleiman, AK., Sadder, L., Nemer, G. (2024). Human Genetics of Tricuspid Atresia and Univentricular Heart. In: Rickert-Sperling, S., Kelly, R.G., Haas, N. (eds) Congenital Heart Diseases: The Broken Heart. Advances in Experimental Medicine and Biology, vol 1441. Springer, Cham. https://doi.org/10.1007/978-3-031-44087-8_54

Download citation

Publish with us

Policies and ethics

Navigation