Molecular Pathways and Animal Models of Atrial Septal Defect

  • Chapter
  • First Online:
Congenital Heart Diseases: The Broken Heart

Abstract

The relative simplicity of the clinical presentation and management of an atrial septal defect belies the complexity of the developmental pathogenesis. Here, we describe the anatomic development of the atrial septum and the venous return to the atrial chambers. Experimental models suggest how mutations and naturally occurring genetic variation could affect developmental steps to cause a defect within the oval fossa, the so-called secundum defect, or other interatrial communications, such as the sinus venosus defect or ostium primum defect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson RH, Brown NA. The anatomy of the heart revisited. Anat Rec. 1996;246:1–7.

    Article  CAS  PubMed  Google Scholar 

  2. Rutland C, Warner L, Thorpe A, et al. Knockdown of alpha myosin heavy chain disrupts the cytoskeleton and leads to multiple defects during chick cardiogenesis. J Anat. 2009;214:905–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deniz E, Jonas S, Khokha M, et al. Endogenous contrast blood flow imaging in embryonic hearts using hemoglobin contrast subtraction angiography. Opt Lett. 2012;37:2979–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jahr M, Manner J. Development of the venous pole of the heart in the frog Xenopus laevis: a morphological study with special focus on the development of the venoatrial connections. Dev Dyn. 2011;240:1518–27.

    Article  PubMed  Google Scholar 

  5. Kelly RG. The second heart field. Curr Top Dev Biol. 2012;100:33–65.

    Article  CAS  PubMed  Google Scholar 

  6. Webb S, Brown NA, Anderson RH. Formation of the atrioventricular septal structures in the normal mouse. Circ Res. 1998;82:645–56.

    Article  CAS  PubMed  Google Scholar 

  7. Webb S, Kanani M, Anderson RH, et al. Development of the human pulmonary vein and its incorporation in the morphologically left atrium. Cardiol Young. 2001;11:632–42.

    Article  CAS  PubMed  Google Scholar 

  8. Webb S, Brown NA, Wessels A, et al. Development of the murine pulmonary vein and its relationship to the embryonic venous sinus. Anat Rec. 1998;250:325–34.

    Article  CAS  PubMed  Google Scholar 

  9. Mommersteeg MT, Soufan AT, de Lange FJ, et al. Two distinct pools of mesenchyme contribute to the development of the atrial septum. Circ Res. 2006;99:351–3.

    Article  CAS  PubMed  Google Scholar 

  10. Snarr BS, O’Neal JL, Chintalapudi MR, et al. Isl1 expression at the venous pole identifies a novel role for the second heart field in cardiac development. Circ Res. 2007;101:971–4.

    Article  CAS  PubMed  Google Scholar 

  11. Snarr BS, Wirrig EE, Phelps AL, et al. A spatiotemporal evaluation of the contribution of the dorsal mesenchymal protrusion to cardiac development. Dev Dyn. 2007;236:1287–94.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Anderson RH, Mohun TJ, Brown NA. Clarifying the morphology of the ostium primum defect. J Anat. 2015;226:244–57.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Loomba RS, Tretter JT, Mohun TJ, et al. Identification and morphogenesis of vestibular atrial septal defects. J Cardiovasc Dev Dis. 2020;7

    Google Scholar 

  14. van den Berg G, Moorman AF. Development of the pulmonary vein and the systemic venous sinus: an interactive 3D overview. PLoS One. 2011;6:e22055.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sizarov A, Anderson RH, Christoffels VM, et al. Three-dimensional and molecular analysis of the venous pole of the develo** human heart. Circulation. 2010;122:798–807.

    Article  PubMed  Google Scholar 

  16. Basson CT, Bachinsky DR, Lin RC, et al. Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15:30–5.

    Article  CAS  PubMed  Google Scholar 

  17. Garg V, Kathiriya IS, Barnes R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424:443–7.

    Article  CAS  PubMed  Google Scholar 

  18. Jay PY, Bielinska M, Erlich JM, et al. Impaired mesenchymal cell function in Gata4 mutant mice leads to diaphragmatic hernias and primary lung defects. Dev Biol. 2007;301:602–14.

    Article  CAS  PubMed  Google Scholar 

  19. Li QY, Newbury-Ecob RA, Terrett JA, et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet. 1997;15:21–9.

    Article  PubMed  Google Scholar 

  20. Nadeau M, Georges RO, Laforest B, et al. An endocardial pathway involving Tbx5, Gata4, and Nos3 required for atrial septum formation. Proc Natl Acad Sci U S A. 2010;107:19356–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. **e L, Hoffmann AD, Burnicka-Turek O, et al. Tbx5-hedgehog molecular networks are essential in the second heart field for atrial septation. Dev Cell. 2012;23:280–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feng Q, Song W, Lu X, et al. Development of heart failure and congenital septal defects in mice lacking endothelial nitric oxide synthase. Circulation. 2002;106:873–9.

    Article  CAS  PubMed  Google Scholar 

  23. Frank D, Yusuf Rangrez A, Friedrich C, et al. Cardiac alpha-Actin (ACTC1) gene mutation causes atrial-septal defects associated with late-onset dilated cardiomyopathy. Circ Genom Precis Med. 2019;12:e002491.

    Article  CAS  PubMed  Google Scholar 

  24. Matsson H, Eason J, Bookwalter CS, et al. Alpha-cardiac actin mutations produce atrial septal defects. Hum Mol Genet. 2008;17:256–65.

    Article  CAS  PubMed  Google Scholar 

  25. Abdelwahid E, Pelliniemi LJ, Szucsik JC, et al. Cellular disorganization and extensive apoptosis in the develo** heart of mice that lack cardiac muscle alpha-actin: apparent cause of perinatal death. Pediatr Res. 2004;55:197–204.

    Article  CAS  PubMed  Google Scholar 

  26. Degenhardt K, Singh MK, Aghajanian H, et al. Semaphorin 3d signaling defects are associated with anomalous pulmonary venous connections. Nat Med. 2013;19:760–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Epstein JA, Aghajanian H, Singh MK. Semaphorin signaling in cardiovascular development. Cell Metab. 2015;21:163–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He Z, Wang KC, Koprivica V, et al. Knowing how to navigate: mechanisms of semaphorin signaling in the nervous system. Sci STKE. 2002;2002:re1.

    Article  PubMed  Google Scholar 

  29. Cota CD, Bagher P, Pelc P, et al. Mice with mutations in Mahogunin ring finger-1 (Mgrn1) exhibit abnormal patterning of the left-right axis. Dev Dyn. 2006;235:3438–47.

    Article  CAS  PubMed  Google Scholar 

  30. Anderson RH, Wessels A, Vettukattil JJ. Morphology and morphogenesis of atrioventricular septal defect with common atrioventricular junction. World J Pediatr Congenit Heart Surg. 2010;1:59–67.

    Article  PubMed  Google Scholar 

  31. Kaski JP, Wolfenden J, Josen M, et al. Can atrioventricular septal defects exist with intact septal structures? Heart. 2006;92:832–5.

    Article  CAS  PubMed  Google Scholar 

  32. Lana-Elola E, Watson-Scales S, Slender A, et al. Genetic dissection of Down syndrome-associated congenital heart defects using a new mouse map** panel. Elife. 2016;5

    Google Scholar 

  33. Jay PY, Akhirome E, Magnan RA, et al. Transgenerational cardiology: One way to a baby’s heart is through the mother. Mol Cell Endocrinol. 2016;435:94–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akhirome E, Regmi SD, Magnan RA, et al. The genetic architecture of a congenital heart defect is related to its fitness cost. Genes (Basel). 2021;12

    Google Scholar 

  35. Bertrand N, Roux M, Ryckebusch L, et al. Hox genes define distinct progenitor sub-domains within the second heart field. Dev Biol. 2011;353:266–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nguyen HH, Jay PY. A single misstep in cardiac development explains the co-occurrence of tetralogy of fallot and complete atrioventricular septal defect in Down syndrome. J Pediatr. 2014;165:194–6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Eldar A, Dorfman R, Weiss D, et al. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature. 2002;419:304–8.

    Article  CAS  PubMed  Google Scholar 

  38. McDowell GS, Lemire JM, Pare JF, et al. Conserved roles for cytoskeletal components in determining laterality. Integr Biol (Camb). 2016;8:267–86.

    Article  CAS  PubMed  Google Scholar 

  39. Vandenberg LN, Adams DS, Levin M. Normalized shape and location of perturbed craniofacial structures in the Xenopus tadpole reveal an innate ability to achieve correct morphology. Dev Dyn. 2012;241:863–78.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magnan, R.A., Kang, L., Degenhardt, K.R., Anderson, R.H., Jay, P.Y. (2024). Molecular Pathways and Animal Models of Atrial Septal Defect. In: Rickert-Sperling, S., Kelly, R.G., Haas, N. (eds) Congenital Heart Diseases: The Broken Heart. Advances in Experimental Medicine and Biology, vol 1441. Springer, Cham. https://doi.org/10.1007/978-3-031-44087-8_25

Download citation

Publish with us

Policies and ethics

Navigation