The Contractile Machines of the Heart

  • Chapter
  • First Online:
Congenital Heart Diseases: The Broken Heart

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1441))

Abstract

This chapter will describe basic structural and functional features of the contractile apparatus of muscle cells of the heart, namely, cardiomyocytes and smooth muscle cells. Cardiomyocytes form the contractile myocardium of the heart, while smooth muscle cells form the contractile coronary vessels. Both muscle types have distinct properties and will be considered with respect to their cellular appearance (brick-like cross-striated versus spindle-like smooth), arrangement of contractile proteins (sarcomeric versus non-sarcomeric organization), calcium activation mechanisms (thin-filament versus thick-filament regulation), contractile features (fast and phasic versus slow and tonic), energy metabolism (high oxygen versus low oxygen demand), molecular motors (type II myosin isoenzymes with high adenosine diphosphate [ADP]-release rate versus myosin isoenzymes with low ADP-release rates), chemomechanical energy conversion (high adenosine triphosphate [ATP] consumption and short duty ratio versus low ATP consumption and high duty ratio of myosin II cross-bridges [XBs]), and excitation-contraction coupling (calcium-induced calcium release versus pharmacomechanical coupling). Part of the work has been published (Neuroscience – From Molecules to Behavior”, Chap. 22, Galizia and Lledo eds 2013, Springer-Verlag; with kind permission from Springer Science + Business Media).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Squire JM. Muscle: design, diversity, and disease. Menlo Park: The Benjamin/Cummings Publishing Co; 1986.

    Google Scholar 

  2. Franzini-Armstrong C. Studies of the triad. I. Structure of the junction in frog twitch fibers. J Cell Biol. 1970;47:488–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sweeney HL, Hammers DW. Muscle Contraction (2018). Cold Spring Harb Perspect Biol. 2018;10(2)

    Google Scholar 

  4. Odronitz F, Kollmar M. Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol. 2007;8:R196.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kühne W. Über das Protoplasma und die Contractilität. Leipzig: Verlag von Wilhelm Engelmann; 1864.

    Book  Google Scholar 

  6. Rayment I, Rypniewski WR, Schmidt-Bäse K, et al. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993;261:50–8.

    Article  CAS  PubMed  Google Scholar 

  7. Morano I. Essential myosin light chains regulate myosin function and muscle contraction. In: Sugi H, editor. Muscle contraction and cell motility. Pan Stanford Publishing; 2016. p. 273–88.

    Chapter  Google Scholar 

  8. Tharp CA, Haywood ME, Sbaizero O, et al. Giant protein Titin’s role in cardiomyopathy: genetic, transcriptional, and post-translational modifications of TTN and their contribution to cardiac disease. Front Physiol. 2019;10:1436.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huxley HE. Structural changes of the actin- and myosin-containing filaments during contraction. In: The mechanism of muscle contraction, Cold Spring Harbor symposia on quantitative biology, vol. XXXVII; 1973. p. 361–76.

    Google Scholar 

  10. Haselgrove JC. Evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle. In: The mechanism of muscle contraction, Cold Spring Harbor symposia on quantitative biology, vol. XXXVII; 1973. p. 341–53.

    Google Scholar 

  11. Huxley AF. Muscle structure and theories of contraction. Prog Biophys Chem. 1957;7:255–318.

    Article  CAS  Google Scholar 

  12. Lymn RW, Taylor EW. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971;10:4617–24.

    Article  CAS  PubMed  Google Scholar 

  13. Geeves MA, Holmes KC. The molecular mechanism of muscle contraction. Adv Protein Chem. 2005;71:161–93.

    Article  CAS  PubMed  Google Scholar 

  14. Brenner B. Effects of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction. Proc Natl Acad Sci U S A. 1988;85:3265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibers. J Physiol. 1966;184:170–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huxley H, Hanson J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1953;173:973–6.

    Article  Google Scholar 

  17. Hill AV. The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci. 1938;126:136–95.

    Article  Google Scholar 

  18. Fabiato A. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol Cell Physiol. 1983;245:C1–C14.

    Article  CAS  Google Scholar 

  19. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205.

    Article  CAS  PubMed  Google Scholar 

  20. Bozler E. Action potentials and conduction of excitation in muscle. Biol Symp. 1941;3:95–109.

    Google Scholar 

  21. Dillon PF, Aksoy MO, Driska SP, et al. Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science. 1981;211:495–7.

    Article  CAS  PubMed  Google Scholar 

  22. Rüegg JC. Calcium in muscle contraction. Heidelberg: Springer; 1992.

    Book  Google Scholar 

  23. Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003;834:1325–58.

    Article  Google Scholar 

  24. Arner A, Löfgren M, Morano I. Smooth, slow and smart muscle motors. J Muscle Res Cell Motil. 2003;24:165–73.

    Article  CAS  PubMed  Google Scholar 

  25. Somlyo AP, Somlyo AV. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol. 2000;522:177–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Morano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morano, I. (2024). The Contractile Machines of the Heart. In: Rickert-Sperling, S., Kelly, R.G., Haas, N. (eds) Congenital Heart Diseases: The Broken Heart. Advances in Experimental Medicine and Biology, vol 1441. Springer, Cham. https://doi.org/10.1007/978-3-031-44087-8_21

Download citation

Publish with us

Policies and ethics

Navigation