Hemodynamics During Development and Postnatal Life

  • Chapter
  • First Online:
Congenital Heart Diseases: The Broken Heart

Abstract

A well-developed heart is essential for embryonic survival. There are constant interactions between cardiac tissue motion and blood flow, which determine the heart shape itself. Hemodynamic forces are a powerful stimulus for cardiac growth and differentiation. Therefore, it is particularly interesting to investigate how the blood flows through the heart and how hemodynamics is linked to a particular species and its development, including human. The appropriate patterns and magnitude of hemodynamic stresses are necessary for the proper formation of cardiac structures, and hemodynamic perturbations have been found to cause malformations via identifiable mechanobiological molecular pathways. There are significant differences in cardiac hemodynamics among vertebrate species, which go hand in hand with the presence of specific anatomical structures. However, strong similarities during development suggest a common pattern for cardiac hemodynamics in human adults. In the human fetal heart, hemodynamic abnormalities during gestation are known to progress to congenital heart malformations by birth. In this chapter, we discuss the current state of the knowledge of the prenatal cardiac hemodynamics, as discovered through small and large animal models, as well as from clinical investigations, with parallels gathered from the poikilotherm vertebrates that emulate some hemodynamically significant human congenital heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van den Hoff MJ, Kruithof BP, Moorman AF, Markwald RR, Wessels A. Formation of myocardium after the initial development of the linear heart tube. Dev Biol. 2001;240:61–76.

    Article  PubMed  Google Scholar 

  2. Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai HJ, Hove JR, Fraser SE, Dickinson ME, Gharib M. The embryonic vertebrate heart tube is a dynamic suction pump. Science. 2006;312:751–3.

    Article  CAS  PubMed  Google Scholar 

  3. Harvey RP. Patterning the vertebrate heart. Nat Rev Genet. 2002;3:544–56.

    Article  CAS  PubMed  Google Scholar 

  4. Jensen B, Christoffels VM. Reptiles as a model system to study heart development, vol. 12. Cold Spring Harb Perspect Biol; 2020. p. a037226.

    Google Scholar 

  5. Lillywhite HB, Zippel KC, Farrell AP. Resting and maximal heart rates in ectothermic vertebrates. Comp Biochem Physiol A Mol Integr Physiol. 1999;124:369–82.

    Article  CAS  PubMed  Google Scholar 

  6. Goenezen S, Rennie MY, Rugonyi S. Biomechanics of early cardiac development. Biomech Model Mechanobiol. 2012;11:1187–204.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jones EA, le Noble F, Eichmann A. What determines blood vessel structure? Genetic prespecification vs. hemodynamics. Physiology (Bethesda). 2006;21:388–95.

    PubMed  Google Scholar 

  8. Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003;421:172–7.

    Article  CAS  PubMed  Google Scholar 

  9. Sedmera D, Pexieder T, Rychterova V, Hu N, Clark EB. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec. 1999;254:238–52.

    Article  CAS  PubMed  Google Scholar 

  10. Midgett M, Rugonyi S. Congenital heart malformations induced by hemodynamic altering surgical interventions. Front Physiol. 2014;5:287.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jensen B, Wang T. Hemodynamic consequences of cardiac malformations in two juvenile ball pythons (Python regius). J Zoo Wildl Med. 2009;40:752–6.

    Article  PubMed  Google Scholar 

  12. Stainier DY, Fouquet B, Chen JN, Warren KS, Weinstein BM, Meiler SE, Mohideen MA, Neuhauss SC, Solnica-Krezel L, Schier AF, Zwartkruis F, Stemple DL, Malicki J, Driever W, Fishman MC. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development. 1996;123:285–92.

    Article  CAS  PubMed  Google Scholar 

  13. Manner J, Wessel A, Yelbuz TM. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev Dyn. 2010;239:1035–46.

    Article  PubMed  Google Scholar 

  14. Taber LA, Zhang J, Perucchio R. Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube. J Biomech Eng. 2007;129:441–9.

    Article  PubMed  Google Scholar 

  15. Lee J, Moghadam ME, Kung E, Cao H, Beebe T, Miller Y, Roman BL, Lien CL, Chi NC, Marsden AL, Hsiai TK. Moving domain computational fluid dynamics to interface with an embryonic model of cardiac morphogenesis. PLoS One. 2013;8:e72924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gierten J, Pylatiuk C, Hammouda OT, Schock C, Stegmaier J, Wittbrodt J, Gehrig J, Loosli F. Automated high-throughput heartbeat quantification in medaka and zebrafish embryos under physiological conditions. Sci Rep. 2020;10:2046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bagatto B, Burggren W. A three-dimensional functional assessment of heart and vessel development in the larva of the zebrafish (Danio rerio). Physiol Biochem Zool. 2006;79:194–201.

    Article  PubMed  Google Scholar 

  18. Salehin N, Villarreal C, Teranikar T, Dubansky B, Lee J, Chuong CJ. Assessing pressure-volume relationship in develo** heart of zebrafish in-vivo. Ann Biomed Eng. 2021;49:2080–93.

    Article  PubMed  Google Scholar 

  19. Bartman T, Walsh EC, Wen KK, McKane M, Ren J, Alexander J, Rubenstein PA, Stainier DY. Early myocardial function affects endocardial cushion development in zebrafish. PLoS Biol. 2004;2:E129.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vermot J, Forouhar AS, Liebling M, Wu D, Plummer D, Gharib M, Fraser SE. Reversing blood flows act through klf2a to ensure normal valvulogenesis in the develo** heart. PLoS Biol. 2009;7:e1000246.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Banjo T, Grajcarek J, Yoshino D, Osada H, Miyasaka KY, Kida YS, Ueki Y, Nagayama K, Kawakami K, Matsumoto T, Sato M, Ogura T. Haemodynamically dependent valvulogenesis of zebrafish heart is mediated by flow-dependent expression of miR-21. Nat Commun. 2013;4:1978.

    Article  PubMed  Google Scholar 

  22. Steed E, Faggianelli N, Roth S, Ramspacher C, Concordet JP, Vermot J. klf2a couples mechanotransduction and zebrafish valve morphogenesis through fibronectin synthesis. Nat Commun. 2016;7:11646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hsu JJ, Vedula V, Baek KI, Chen C, Chen J, Chou MI, Lam J, Subhedar S, Wang J, Ding Y, Chang CC, Lee J, Demer LL, Tintut Y, Marsden AL, Hsiai TK. Contractile and hemodynamic forces coordinate Notch1b-mediated outflow tract valve formation. JCI Insight. 2019;5:e124460.

    Article  PubMed  Google Scholar 

  24. Foo YY, Pant S, Tay HS, Imangali N, Chen N, Winkler C, Yap CH. 4D modelling of fluid mechanics in the zebrafish embryonic heart. Biomech Model Mechanobiol. 2020;19:221–32.

    Article  PubMed  Google Scholar 

  25. Lee J, Vedula V, Baek KI, Chen J, Hsu JJ, Ding Y, Chang CC, Kang H, Small A, Fei P, Chuong CM, Li R, Demer L, Packard RRS, Marsden AL, Hsiai TK. Spatial and temporal variations in hemodynamic forces initiate cardiac trabeculation. JCI Insight. 2018;3:e96672.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peshkovsky C, Totong R, Yelon D. Dependence of cardiac trabeculation on neuregulin signaling and blood flow in zebrafish. Dev Dyn. 2011;240:446–56.

    Article  PubMed  Google Scholar 

  27. Rasouli SJ, Stainier DYR. Regulation of cardiomyocyte behavior in zebrafish trabeculation by Neuregulin 2a signaling. Nat Commun. 2017;8:15281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Battista NA, Lane AN, Liu J, Miller LA. Fluid dynamics in heart development: effects of hematocrit and trabeculation. Math Med Biol. 2018;35:493–516.

    Article  PubMed  Google Scholar 

  29. Ribatti D. The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model. Mech Dev. 2016;141:70–7.

    Article  CAS  PubMed  Google Scholar 

  30. Jenkins MW, Rothenberg F, Roy D, Nikolski VP, Hu Z, Watanabe M, Wilson DL, Efimov IR, Rollins AM. 4D embryonic cardiography using gated optical coherence tomography. Opt Express. 2006;14:736–48.

    Article  CAS  PubMed  Google Scholar 

  31. Jenkins MW, Adler DC, Gargesha M, Huber R, Rothenberg F, Belding J, Watanabe M, Wilson DL, Fujimoto JG, Rollins AM. Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser. Opt Express. 2007;15:6251–67.

    Article  CAS  PubMed  Google Scholar 

  32. Peterson LM, Jenkins MW, Gu S, Barwick L, Watanabe M, Rollins AM. 4D shear stress maps of the develo** heart using Doppler optical coherence tomography. Biomed Opt Express. 2012;3:3022–32.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hu N, Clark EB. Hemodynamics of the stage 12 to stage 29 chick embryo. Circ Res. 1989;65:1665–70.

    Article  CAS  PubMed  Google Scholar 

  34. Midgett M, Chivukula VK, Dorn C, Wallace S, Rugonyi S. Blood flow through the embryonic heart outflow tract during cardiac loo** in HH13-HH18 chicken embryos. J R Soc Interface. 2015;12:20150652.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Oosterbaan AM, Ursem NT, Struijk PC, Bosch JG, van der Steen AF, Steegers EA. Doppler flow velocity waveforms in the embryonic chicken heart at developmental stages corresponding to 5-8 weeks of human gestation. Ultrasound Obstet Gynecol. 2009;33:638–44.

    Article  CAS  PubMed  Google Scholar 

  36. Ho S, Chan WX, Phan-Thien N, Yap CH. Organ dynamics and hemodynamic of the whole HH25 avian embryonic heart, revealed by ultrasound biomicroscopy, boundary tracking, and flow simulations. Sci Rep. 2019;9:18072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ho S, Tan GXY, Foo TJ, Phan-Thien N, Yap CH. Organ dynamics and fluid dynamics of the HH25 Chick embryonic cardiac ventricle as revealed by a novel 4D high-frequency ultrasound imaging technique and computational flow simulations. Ann Biomed Eng. 2017;45:2309–23.

    Article  PubMed  Google Scholar 

  38. Liu A, Yin X, Shi L, Li P, Thornburg KL, Wang R, Rugonyi S. Biomechanics of the chick embryonic heart outflow tract at HH18 using 4D optical coherence tomography imaging and computational modeling. PLoS One. 2012;7:e40869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bharadwaj KN, Spitz C, Shekhar A, Yalcin HC, Butcher JT. Computational fluid dynamics of develo** avian outflow tract heart valves. Ann Biomed Eng. 2012;40:2212–27.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ho S, Chan WX, Rajesh S, Phan-Thien N, Yap CH. Fluid dynamics and forces in the HH25 avian embryonic outflow tract. Biomech Model Mechanobiol. 2019;18:1123–37.

    Article  PubMed  Google Scholar 

  41. Kowalski WJ, Dur O, Wang Y, Patrick MJ, Tinney JP, Keller BB, Pekkan K. Critical transitions in early embryonic aortic arch patterning and hemodynamics. PLoS One. 2013;8:e60271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lindsey SE, Menon PG, Kowalski WJ, Shekhar A, Yalcin HC, Nishimura N, Schaffer CB, Butcher JT, Pekkan K. Growth and hemodynamics after early embryonic aortic arch occlusion. Biomech Model Mechanobiol. 2015;14(4):735–51.

    Article  PubMed  Google Scholar 

  43. Hogers B, DeRuiter MC, Gittenberger-de Groot AC, Poelmann RE. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res. 1997;80:473–81.

    Article  CAS  PubMed  Google Scholar 

  44. Clark EB, Hu N, Frommelt P, Vandekieft GK, Dummett JL, Tomanek RJ. Effect of increased pressure on ventricular growth in stage 21 chick embryos. Am J Phys. 1989;257:H55–61.

    CAS  Google Scholar 

  45. Clark EB, Hu N, Rosenquist GC. Effect of conotruncal constriction on aortic-mitral valve continuity in the stage 18, 21 and 24 chick embryo. Am J Cardiol. 1984;53:324–7.

    Article  CAS  PubMed  Google Scholar 

  46. Tobita K, Garrison JB, Li JJ, Tinney JP, Keller BB. Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads. Anat Rec A Discov Mol Cell Evol Biol. 2005;283:193–201.

    Article  PubMed  Google Scholar 

  47. Taber LA, Chabert S. Theoretical and experimental study of growth and remodeling in the develo** heart. Biomechan Model Mechanobiol. 2002;1:29–43.

    Article  CAS  Google Scholar 

  48. Sedmera D, Hu N, Weiss KM, Keller BB, Denslow S, Thompson RP. Cellular changes in experimental left heart hypoplasia. Anat Rec. 2002;267:137–45.

    Article  PubMed  Google Scholar 

  49. Tomanek RJ, Hu N, Phan B, Clark EB. Rate of coronary vascularization during embryonic chicken development is influenced by the rate of myocardial growth. Cardiovasc Res. 1999;41:663–71.

    Article  CAS  PubMed  Google Scholar 

  50. Chivukula VK, Goenezen S, Liu A, Rugonyi S. Effect of outflow tract banding on embryonic cardiac hemodynamics. J Cardiovasc Dev Dis. 2016;3:1.

    PubMed  Google Scholar 

  51. Rychter Z, Rychterova V, Lemez L. Formation of the heart loop and proliferation structure of its wall as a base for ventricular septation. Herz. 1979;4:86–90.

    CAS  PubMed  Google Scholar 

  52. Tobita K, Keller BB. Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos. Am J Physiol Heart Circ Physiol. 2000;279:H959–69.

    Article  CAS  PubMed  Google Scholar 

  53. Tobita K, Schroder EA, Tinney JP, Garrison JB, Keller BB. Regional passive ventricular stress-strain relations during development of altered loads in chick embryo. Am J Physiol Heart Circ Physiol. 2002;282:H2386–96.

    Article  CAS  PubMed  Google Scholar 

  54. Pesevski Z, Kvasilova A, Stopkova T, Nanka O, Drobna Krejci E, Buffinton C, Kockova R, Eckhardt A, Sedmera D. Endocardial Fibroelastosis is secondary to hemodynamic alterations in the Chick embryonic model of Hypoplastic left heart syndrome. Dev Dyn. 2018;247:509–20.

    Article  CAS  PubMed  Google Scholar 

  55. McElhinney DB, Vogel M, Benson CB, Marshall AC, Wilkins-Haug LE, Silva V, Tworetzky W. Assessment of left ventricular endocardial fibroelastosis in fetuses with aortic stenosis and evolving hypoplastic left heart syndrome. Am J Cardiol. 2010;106:1792–7.

    Article  PubMed  Google Scholar 

  56. deAlmeida A, McQuinn T, Sedmera D. Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ Res. 2007;100:1363–70.

    Article  CAS  PubMed  Google Scholar 

  57. Friedman KG, Sleeper LA, Freud LR, Marshall AC, Godfrey ME, Drogosz M, Lafranchi T, Benson CB, Wilkins-Haug LE, Tworetzky W. Improved technical success, postnatal outcome and refined predictors of outcome for fetal aortic valvuloplasty. Ultrasound Obstet Gynecol. 2018;52:212–20.

    Article  CAS  PubMed  Google Scholar 

  58. Tworetzky W, McElhinney DB, Marx GR, Benson CB, Brusseau R, Morash D, Wilkins-Haug LE, Lock JE, Marshall AC. In utero Valvuloplasty for pulmonary atresia with Hypoplastic right ventricle: techniques and outcomes. Pediatrics. 2009;124:e510–8.

    Article  PubMed  Google Scholar 

  59. Ho S, Chan WX, Yap CH. Fluid mechanics of the left atrial ligation chick embryonic model of hypoplastic left heart syndrome. Biomech Model Mechanobiol. 2021;20:1337–51.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Keller BB, MacLennan MJ, Tinney JP, Yoshigi M. In vivo assessment of embryonic cardiovascular dimensions and function in day-10.5 to −14.5 mouse embryos. Circ Res. 1996;79:247–55.

    Article  CAS  PubMed  Google Scholar 

  61. Yu Q, Leatherbury L, Tian X, Lo CW. Cardiovascular assessment of fetal mice by in utero echocardiography. Ultrasound Med Biol. 2008;34:741–52.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang S, Lakomy DS, Garcia MD, Lopez AL 3rd, Larin KV, Larina IV. Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with Doppler optical coherence tomography. J Biophotonics. 2016;9:837–47.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hoog TG, Fredrickson SJ, Hsu CW, Senger SM, Dickinson ME, Udan RS. The effects of reduced hemodynamic loading on morphogenesis of the mouse embryonic heart. Dev Biol. 2018;442:127–37.

    Article  CAS  PubMed  Google Scholar 

  64. Saiki Y, Konig A, Waddell J, Rebeyka IM. Hemodynamic alteration by fetal surgery accelerates myocyte proliferation in fetal Guinea pig hearts. Surgery. 1997;122:412–9.

    Article  CAS  PubMed  Google Scholar 

  65. Sedmera D, Kucera P, Kolar F, Thompson RP. Proliferative responses to myocardial remodeling in the develo** heart. In: Artman M, Benson DW, Srivastava D, Nakazawa M, editors. Cardiovascular development and congenital malformations: molecular and genetic mechanisms. Malden: Blackwell Publishing; 2005. p. 47–51.

    Chapter  Google Scholar 

  66. Rahman A, DeYoung T, Cahill LS, Yee Y, Debebe SK, Botelho O, Seed M, Chaturvedi RR, Sled JG. A mouse model of hypoplastic left heart syndrome demonstrating left heart hypoplasia and retrograde aortic arch flow. Dis Model Mech. 2021;14:dmm049077.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yashiro K, Shiratori H, Hamada H. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature. 2007;450:285–8.

    Article  CAS  PubMed  Google Scholar 

  68. Reddy VM, Liddicoat JR, Klein JR, Wampler RK, Hanley FL. Long-term outcome after fetal cardiac bypass: fetal survival to full term and organ abnormalities. J Thorac Cardiovasc Surg. 1996;111:536–44.

    Article  CAS  PubMed  Google Scholar 

  69. Liu XB, Zhou CB, Chen JM, Cen JZ, Xu G, Zhuang J. A fetal goat model of cardiopulmonary bypass with cardioplegic arrest and hemodynamic assessment. J Thorac Cardiovasc Surg. 2011;142:1562–6.

    Article  PubMed  Google Scholar 

  70. Strainic J. Fetal cardiac intervention for right sided heart disease: pulmonary atresia with intact ventricular septum. Birth Defects Res. 2019;111:395–9.

    Article  CAS  PubMed  Google Scholar 

  71. Edwards A, Menahem S, Veldman A, Schranz D, Chan Y, Nitsos I, Wong F. Fetal cardiac catheterization using a percutaneous transhepatic access technique: preliminary experience in a lamb model. Ultrasound Obstet Gynecol. 2013;42:58–63.

    Article  CAS  PubMed  Google Scholar 

  72. Emery SP, Kreutzer J, McCaffrey FM, Sherman FS, Simhan HN, Keller BB. The learning curve for a fetal cardiac intervention team. Minim Invasive Surg. 2010;2010:674185.

    PubMed  PubMed Central  Google Scholar 

  73. Edwards A, Veldman A, Nitsos I, Chan Y, Brew N, Teoh M, Menahem S, Schranz D, Wong FY. Percutaneous fetal cardiac catheterization technique for stenting the foramen ovale in a midgestation lamb model. Circ Cardiovasc Interv. 2015;8:e001967.

    Article  PubMed  Google Scholar 

  74. Zakko J, Blum KM, Drews JD, Wu YL, Hatoum H, Russell M, Gooden S, Heitkemper M, Conroy O, Kelly J, Carey S, Sacks M, Texter K, Ragsdale E, Strainic J, Bocks M, Wang Y, Dasi LP, Armstrong AK, Breuer C. Development of tissue engineered heart valves for percutaneous Transcatheter delivery in a fetal ovine model. JACC Basic Transl Sci. 2020;5:815–28.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fishman NH, Hof RB, Rudolph AM, Heymann MA. Models of congenital heart disease in fetal lambs. Circulation. 1978;58:354–64.

    Article  CAS  PubMed  Google Scholar 

  76. Wong FY, Veldman A, Sasi A, Teoh M, Edwards A, Chan Y, Graupner O, Enzensberger C, Axt-Fliedner R, Black MJ, Schranz D. Induction of left ventricular hypoplasia by occluding the foramen ovale in the fetal lamb. Sci Rep. 2020;10:880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Donofrio MT, Bremer YA, Moskowitz WB. Diagnosis and management of restricted or closed foramen ovale in fetuses with congenital heart disease. Am J Cardiol. 2004;94:1348–51.

    Article  PubMed  Google Scholar 

  78. Makikallio K, McElhinney DB, Levine JC, Marx GR, Colan SD, Marshall AC, Lock JE, Marcus EN, Tworetzky W. Fetal aortic valve stenosis and the evolution of hypoplastic left heart syndrome: patient selection for fetal intervention. Circulation. 2006;113:1401–5.

    Article  PubMed  Google Scholar 

  79. Eghtesady P, Michelfelder E, Altaye M, Ballard E, Hirsh R, Beekman RH 3rd. Revisiting animal models of aortic stenosis in the early gestation fetus. Ann Thorac Surg. 2007;83:631–9.

    Article  PubMed  Google Scholar 

  80. Morrison JL. Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol. 2008;35:730–43.

    Article  CAS  PubMed  Google Scholar 

  81. Jonker SS, Kamna D, LoTurco D, Kailey J, Brown LD. IUGR impairs cardiomyocyte growth and maturation in fetal sheep. J Endocrinol. 2018;239:253–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Morrison JL, Botting KJ, Dyer JL, Williams SJ, Thornburg KL, McMillen IC. Restriction of placental function alters heart development in the sheep fetus. Am J Physiol Regul Integr Comp Physiol. 2007;293:R306–13.

    Article  CAS  PubMed  Google Scholar 

  83. Niewiadomska-Jarosik K, Zamojska J, Zamecznik A, Wosiak A, Jarosik P, Stanczyk J. Myocardial dysfunction in children with intrauterine growth restriction: an echocardiographic study. Cardiovasc J Afr. 2017;28:36–9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lawrence KM, Hennessy-Strahs S, McGovern PE, Mejaddam AY, Rossidis AC, Baumgarten HD, Bansal E, Villeda M, Han J, Gou Z, Zhao S, Rychik J, Peranteau WH, Davey MG, Flake AW, Gaynor JW, Bartoli CR. Fetal hypoxemia causes abnormal myocardial development in a preterm ex utero fetal ovine model. JCI Insight. 2018;3:e124338.

    Article  PubMed  PubMed Central  Google Scholar 

  85. De Smedt MC, Visser GH, Meijboom EJ. Fetal cardiac output estimated by Doppler echocardiography during mid- and late gestation. Am J Cardiol. 1987;60:338–42.

    Article  PubMed  Google Scholar 

  86. Sharland GK, Chita SK, Fagg NL, Anderson RH, Tynan M, Cook AC, Allan LD. Left ventricular dysfunction in the fetus: relation to aortic valve anomalies and endocardial fibroelastosis. Br Heart J. 1991;66:419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Levin DL, Mills LJ, Weinberg AG. Hemodynamic, pulmonary vascular, and myocardial abnormalities secondary to pharmacologic constriction of the fetal ductus arteriosus. A possible mechanism for persistent pulmonary hypertension and transient tricuspid insufficiency in the newborn infant. Circulation. 1979;60:360–4.

    Article  CAS  PubMed  Google Scholar 

  88. Rudolph AM, Heymann MA. Cardiac output in the fetal lamb: the effects of spontaneous and induced changes of heart rate on right and left ventricular output. Am J Obstet Gynecol. 1976;124:183–92.

    Article  CAS  PubMed  Google Scholar 

  89. Hawkins J, Van Hare GF, Schmidt KG, Rudolph AM. Effects of increasing afterload on left ventricular output in fetal lambs. Circ Res. 1989;65:127–34.

    Article  CAS  PubMed  Google Scholar 

  90. Hecher K, Snijders R, Campbell S, Nicolaides K. Fetal venous, intracardiac, and arterial blood flow measurements in intrauterine growth retardation: relationship with fetal blood gases. Am J Obstet Gynecol. 1995;173:10–5.

    Article  CAS  PubMed  Google Scholar 

  91. Oberhoffer R, Cook AC, Lang D, Sharland G, Allan LD, Fagg NL, Anderson RH. Correlation between echocardiographic and morphological investigations of lesions of the tricuspid valve diagnosed during fetal life. Br Heart J. 1992;68:580–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Al Nafisi B, van Amerom JF, Forsey J, Jaeggi E, Grosse-Wortmann L, Yoo SJ, Macgowan CK, Seed M. Fetal circulation in left-sided congenital heart disease measured by cardiovascular magnetic resonance: a case-control study. J Cardiovasc Magn Reson. 2013;15:65.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Williams IA, Fifer C, Jaeggi E, Levine JC, Michelfelder EC, Szwast AL. The association of fetal cerebrovascular resistance with early neurodevelopment in single ventricle congenital heart disease. Am Heart J. 2013;165:544–550 e1.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rudolph AM. Aortopulmonary transposition in the fetus: speculation on pathophysiology and therapy. Pediatr Res. 2007;61:375–80.

    Article  PubMed  Google Scholar 

  95. Levin DL, Mills LJ, Parkey M. Morphologic development of the pulmonary vascular bed in experimental coarctation of the aorta. Circulation. 1979;60:349–54.

    Article  CAS  PubMed  Google Scholar 

  96. Ruiz A, Cruz-Lemini M, Masoller N, Sanz-Cortes M, Ferrer Q, Ribera I, Martinez JM, Crispi F, Arevalo S, Gomez O, Perez-Hoyos S, Carreras E, Gratacos E, Llurba E. Longitudinal changes in fetal biometry and cerebroplacental hemodynamics in fetuses with congenital heart disease. Ultrasound Obstet Gynecol. 2017;49:379–86.

    Article  CAS  PubMed  Google Scholar 

  97. Llurba E, Sanchez O, Ferrer Q, Nicolaides KH, Ruiz A, Dominguez C, Sanchez-de-Toledo J, Garcia-Garcia B, Soro G, Arevalo S, Goya M, Suy A, Perez-Hoyos S, Alijotas-Reig J, Carreras E, Cabero L. Maternal and foetal angiogenic imbalance in congenital heart defects. Eur Heart J. 2014;35:701–7.

    Article  CAS  PubMed  Google Scholar 

  98. Jensen B, Joyce W, Gregorovicova M, Sedmera D, Wang T, Christoffels VM. Low incidence of atrial septal defects in nonmammalian vertebrates. Evol Dev. 2019;22:e12322.

    PubMed  PubMed Central  Google Scholar 

  99. Zaidi M, Sorathia N, Abbasi H, Khashkhusha A, Harky A. Interventions on patent ductus arteriosus and its impact on congenital heart disease. Cardiol Young. 2020;30:1566–71.

    Article  PubMed  Google Scholar 

  100. Putnam JJC. Anatomy of the heart of the Amphibia. I. Siren Lacertina.; 1977.

    Google Scholar 

  101. Sedmera D, Reckova M, DeAlmeida A, Sedmerova M, Biermann M, Volejnik J, Sarre A, Raddatz E, McCarthy RA, Gourdie RG, Thompson RP. Functional and morphological evidence for a ventricular conduction system in the zebrafish and Xenopus heart. Am J Physiol Heart Circ Physiol. 2003;284:H1152–60.

    Article  CAS  PubMed  Google Scholar 

  102. Hillman SS, Hedrick MS, Kohl ZF. Net cardiac shunts in anuran amphibians: physiology or physics? J Exp Biol. 2014;217:2844–7.

    Article  PubMed  Google Scholar 

  103. Wang T, Hedrick MS, Ihmied YM, Taylor EW. Control and interaction of the cardiovascular and respiratory systems in anuran amphibians. Comp Biochem Physiol A Mol Integr Physiol. 1999;124:393–406.

    Article  CAS  PubMed  Google Scholar 

  104. Hou PC, Burggren WW. Cardiac output and peripheral resistance during larval development in the anuran amphibian Xenopus laevis. Am J Phys. 1995;269:R1126–32.

    CAS  Google Scholar 

  105. Shelton G, Jones DR. A comparative study of central blood pressures in five amphibians. J Exp Biol. 1968;49:631–43.

    Article  CAS  PubMed  Google Scholar 

  106. Burggren WW, Pinder AW. Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. Annu Rev Physiol. 1991;53:107–35.

    Article  CAS  PubMed  Google Scholar 

  107. Olejnickova V, Kolesova H, Bartos M, Sedmera D, Gregorovicova M. The tale-tell heart: evolutionary tetrapod shift from aquatic to terrestrial life-style reflected in heart changes in axolotl (Ambystoma mexicanum). Dev Dyn. 2021;251(6):1004–14.

    Article  PubMed  Google Scholar 

  108. Laurin M, Reisz RR. A reevaluation of early Amniote phylogeny. Zool J Linn Soc-Lond. 1995;113:165–223.

    Article  Google Scholar 

  109. Modesto SP, Anderson JS. The phylogenetic definition of reptilia. Syst Biol. 2004;53:815–21.

    Article  PubMed  Google Scholar 

  110. Gregorovicova M, Sedmera D, Jensen B. Relative position of the atrioventricular canal determines the electrical activation of develo** reptile ventricles. J Exp Biol. 2018;221(Pt 11):jeb178400.

    Article  PubMed  Google Scholar 

  111. Hanemaaijer J, Gregorovicova M, Nielsen JM, Moorman AFM, Wang T, Planken RN, Christoffels VM, Sedmera D, Jensen B. Identification of the building blocks of ventricular septation in monitor lizards (Varanidae). Development. 2019;146:dev177121.

    Article  PubMed  Google Scholar 

  112. Kvasilova A, Olejnickova V, Jensen B, Christoffels VM, Kolesova H, Sedmera D, Gregorovicova M. The formation of the atrioventricular conduction axis is linked in development to ventricular septation. J Exp Biol. 2020;223:jeb229278.

    Article  PubMed  Google Scholar 

  113. Jensen B, Boukens BJ, Crossley DA 2nd, Conner J, Mohan RA, van Duijvenboden K, Postma AV, Gloschat CR, Elsey RM, Sedmera D, Efimov IR, Christoffels VM. Specialized impulse conduction pathway in the alligator heart. elife. 2018;7:e32120.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hicks JW. The physiological and evolutionary significance of cardiovascular shunting patterns in reptiles. News Physiol Sci. 2002;17:241–5.

    PubMed  Google Scholar 

  115. Poelmann RE, Gittenberger-de Groot AC, Biermans MWM, Dolfing AI, Jagessar A, van Hattum S, Hoogenboom A, Wisse LJ, Vicente-Steijn R, de Bakker MAG, Vonk FJ, Hirasawa T, Kuratani S, Richardson MK. Outflow tract septation and the aortic arch system in reptiles: lessons for understanding the mammalian heart. EvoDevo. 2017;8:9.

    Article  PubMed  PubMed Central  Google Scholar 

  116. White FN. Functional anatomy of the heart of reptiles. Am Zool. 1968;8:211–9.

    Article  CAS  PubMed  Google Scholar 

  117. Eme J, Gwalthney J, Blank JM, Owerkowicz T, Barron G, Hicks JW. Surgical removal of right-to-left cardiac shunt in the American alligator (Alligator mississippiensis) causes ventricular enlargement but does not alter apnoea or metabolism during diving. J Exp Biol. 2009;212:3553–63.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Stephenson A, Adams JW, Vaccarezza M. The vertebrate heart: an evolutionary perspective. J Anat. 2017;231:787–97.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Axelsson M, Franklin C, Ouml FC, Nilsson S, Grigg G. Dynamic anatomical study of cardiac shunting in crocodiles using high-resolution angioscopy. J Exp Biol. 1996;199:359–65.

    Article  CAS  PubMed  Google Scholar 

  120. Eme J, Gwalthney J, Owerkowicz T, Blank JM, Hicks JW. Turning crocodilian hearts into bird hearts: growth rates are similar for alligators with and without right-to-left cardiac shunt. J Exp Biol. 2010;213:2673–80.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Axelsson M, Franklin CE. The calibre of the foramen of Panizza in Crocodylus porosus is variable and under adrenergic control. J Comp Physiol B. 2001;171:341–6.

    Article  CAS  PubMed  Google Scholar 

  122. Burggren W. Form and function in reptilian ciruclations. Am Zool. 1987;27:5–19.

    Article  Google Scholar 

  123. Sidhwani P, Yelon D. Fluid forces shape the embryonic heart: insights from zebrafish. Curr Top Dev Biol. 2019;132:395–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Next Generation EU EXCELES, ID: LX22NPO5104, Ministry of Education PROGRES-Q38/LF1/5, Cooperation 207029 Cardiovascular Science, and institutional funding from the Academy of Sciences of the Czech Republic RVO: 67985823. Further support comes from the Grant Agency of the Czech Republic 18-03461S and 22-05271S, and the Czech Health Research Council NU21-02-00402. Royal Society Newton International Fellowship funded under the Newton Fund: NIF\R1\202197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sedmera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gregorovicova, M., Lashkarinia, S.S., Yap, C.H., Tomek, V., Sedmera, D. (2024). Hemodynamics During Development and Postnatal Life. In: Rickert-Sperling, S., Kelly, R.G., Haas, N. (eds) Congenital Heart Diseases: The Broken Heart. Advances in Experimental Medicine and Biology, vol 1441. Springer, Cham. https://doi.org/10.1007/978-3-031-44087-8_11

Download citation

Publish with us

Policies and ethics

Navigation