Point Cloud Diffusion Models for Automatic Implant Generation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Advances in 3D printing of biocompatible materials make patient-specific implants increasingly popular. The design of these implants is, however, still a tedious and largely manual process. Existing approaches to automate implant generation are mainly based on 3D U-Net architectures on downsampled or patch-wise data, which can result in a loss of detail or contextual information. Following the recent success of Diffusion Probabilistic Models, we propose a novel approach for implant generation based on a combination of 3D point cloud diffusion models and voxelization networks. Due to the stochastic sampling process in our diffusion model, we can propose an ensemble of different implants per defect, from which the physicians can choose the most suitable one. We evaluate our method on the SkullBreak and SkullFix datasets, generating high-quality implants and achieving competitive evaluation scores. The project page can be found at https://pfriedri.github.io/pcdiff-implant-io.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 82.38
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 101.91
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. In: Proceedings of Machine Learning and Systems, pp. 3569–3579 (2020)

    Google Scholar 

  2. Hanocka, R., Metzer, G., Giryes, R., Cohen-Or, D.: Point2mesh: a self-prior for deformable meshes. ACM Trans. Graph. 39(4), 126:1–126:12 (2020). Article-Nr. 126

    Google Scholar 

  3. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  4. **, Y., Li, J., Egger, J.: High-resolution cranial implant prediction via patch-wise training. In: Li, J., Egger, J. (eds.) AutoImplant 2020. LNCS, vol. 12439, pp. 94–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0_11

    Chapter  Google Scholar 

  5. Karras, T., Aittala, M., Aila, T., Laine, S.: Elucidating the design space of diffusion-based generative models. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  6. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Eurographics Symposium on Geometry Processing (2006)

    Google Scholar 

  7. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans. Graph. 32, 1–13 (2013)

    Article  Google Scholar 

  8. Kodym, O., Španěl, M., Herout, A.: Cranial defect reconstruction using cascaded CNN with alignment. In: Li, J., Egger, J. (eds.) AutoImplant 2020. LNCS, vol. 12439, pp. 56–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0_7

    Chapter  Google Scholar 

  9. Kodym, O., et al.: Skullbreak/skullfix - dataset for automatic cranial implant design and a benchmark for volumetric shape learning tasks. Data Brief 35, 106902 (2021)

    Article  Google Scholar 

  10. Kroviakov, A., Li, J., Egger, J.: Sparse convolutional neural network for skull reconstruction. In: Li, J., Egger, J. (eds.) AutoImplant 2021. LNCS, vol. 13123, pp. 80–94. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92652-6_7

    Chapter  Google Scholar 

  11. Li, J., Egger, J. (eds.): Towards the Automatization of Cranial Implant Design in Cranioplasty, vol. 12439. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0

  12. Li, J., Egger, J. (eds.): Towards the Automatization of Cranial Implant Design in Cranioplasty II, vol. 13123. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-92652-6

  13. Li, J., et al.: Autoimplant 2020-first MICCAI challenge on automatic cranial implant design. IEEE Trans. Med. Imaging 40(9), 2329–2342 (2021)

    Article  Google Scholar 

  14. Li, J., et al.: Automatic skull defect restoration and cranial implant generation for cranioplasty. Med. Image Anal. 73, 102171 (2021)

    Article  Google Scholar 

  15. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel CNN for efficient 3D deep learning. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  16. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21, 163–169 (1987)

    Article  Google Scholar 

  17. Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Gool, L.V.: Repaint: inpainting using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  18. Luo, S., Hu, W.: Diffusion probabilistic models for 3D point cloud generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  19. Lyu, Z., Kong, Z., Xu, X., Pan, L., Lin, D.: A conditional point diffusion-refinement paradigm for 3D point cloud completion. In: International Conference on Learning Representations (2022)

    Google Scholar 

  20. Matzkin, F., Newcombe, V., Glocker, B., Ferrante, E.: Cranial implant design via virtual craniectomy with shape priors. In: Li, J., Egger, J. (eds.) AutoImplant 2020. LNCS, vol. 12439, pp. 37–46. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0_5

    Chapter  Google Scholar 

  21. Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., Chen, M.: Point-e: a system for generating 3D point clouds from complex prompts. ar**v preprint ar**v:2212.08751 (2022)

  22. Pathak, S., Sindhura, C., Gorthi, R.K.S.S., Kiran, D.V., Gorthi, S.: Cranial implant design using V-Net based region of interest reconstruction. In: Li, J., Egger, J. (eds.) AutoImplant 2021. LNCS, vol. 13123, pp. 116–128. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92652-6_10

    Chapter  Google Scholar 

  23. Peng, S., Jiang, C.M., Liao, Y., Niemeyer, M., Pollefeys, M., Geiger, A.: Shape as points: a differentiable Poisson solver. In: Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  24. Pimentel, P., et al.: Automated virtual reconstruction of large skull defects using statistical shape models and generative adversarial networks. In: Li, J., Egger, J. (eds.) AutoImplant 2020. LNCS, vol. 12439, pp. 16–27. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0_3

    Chapter  Google Scholar 

  25. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  26. Saharia, C., et al.: Palette: image-to-image diffusion models. In: ACM SIGGRAPH 2022 Conference Proceedings (2021)

    Google Scholar 

  27. Shi, H., Chen, X.: Cranial implant design through multiaxial slice inpainting using deep learning. In: Li, J., Egger, J. (eds.) AutoImplant 2020. LNCS, vol. 12439, pp. 28–36. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0_4

    Chapter  Google Scholar 

  28. Sohl-Dickstein, J., Weiss, E.A., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: Proceedings of the 32nd International Conference on Machine Learning (2015)

    Google Scholar 

  29. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: International Conference on Learning Representations (2020)

    Google Scholar 

  30. Wang, B., et al.: Cranial implant design using a deep learning method with anatomical regularization. In: Li, J., Egger, J. (eds.) AutoImplant 2020. LNCS, vol. 12439, pp. 85–93. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64327-0_10

    Chapter  Google Scholar 

  31. Wodzinski, M., Daniol, M., Hemmerling, D.: Improving the automatic cranial implant design in cranioplasty by linking different datasets. In: Li, J., Egger, J. (eds.) AutoImplant 2021. LNCS, vol. 13123, pp. 29–44. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92652-6_4

    Chapter  Google Scholar 

  32. Wolleb, J., Sandkühler, R., Bieder, F., Valmaggia, P., Cattin, P.C.: Diffusion models for implicit image segmentation ensembles. In: Proceedings of Machine Learning Research, pp. 1–13 (2022)

    Google Scholar 

  33. Yang, B., Fang, K., Li, X.: Cranial implant prediction by learning an ensemble of slice-based skull completion networks. In: Li, J., Egger, J. (eds.) AutoImplant 2021. LNCS, vol. 13123, pp. 95–104. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92652-6_8

    Chapter  Google Scholar 

  34. Yu, L., Li, J., Egger, J.: PCA-Skull: 3D skull shape modelling using principal component analysis. In: Li, J., Egger, J. (eds.) AutoImplant 2021. LNCS, vol. 13123, pp. 105–115. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92652-6_9

    Chapter  Google Scholar 

  35. Yuksel, C.: Sample elimination for generating poisson disk sample sets. Comput. Graph. Forum 34, 25–32 (2015)

    Article  Google Scholar 

  36. Zeng, X., et al.: LION: latent point diffusion models for 3D shape generation. In: Advances in Neural Information Processing Systems (2022)

    Google Scholar 

  37. Zhou, L., Du, Y., Wu, J.: 3D shape generation and completion through point-voxel diffusion. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5826–5835 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Werner Siemens Foundation through the MIRACLE II project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Friedrich .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 15302 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Friedrich, P., Wolleb, J., Bieder, F., Thieringer, F.M., Cattin, P.C. (2023). Point Cloud Diffusion Models for Automatic Implant Generation. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14228. Springer, Cham. https://doi.org/10.1007/978-3-031-43996-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43996-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43995-7

  • Online ISBN: 978-3-031-43996-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation