Max-Entropy Sampling for Deterministic Timed Automata Under Linear Duration Constraints

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14287))

Included in the following conference series:

  • 275 Accesses

Abstract

Adding probabilities to timed automata enables one to carry random simulation of their behaviors and provide answers with statistical guarantees to problems otherwise untractable. Thus, when just a timed language is given, the following natural question arises: What probability should we consider if we have no a priori knowledge except the given language and the considered length (i.e. number of events) of timed words? The maximal entropy principle tells us to take the probability measure that maximises the entropy which is the uniform measure on the language restricted to timed word of the given length (with such a uniform measure every timed word has the same chance of being sampled). The uniform sampling method developed in the last decade provides no control on the duration of sampled timed words.

In the present article we consider the problem of finding a probability measure on a timed language maximising the entropy under general linear constraints on duration and for timed words of a given length. The solution we provide generalizes to timed languages a well-known result on probability measure over the real line maximising the Shannon continuous entropy under linear constraints. After giving our general theorem for general linear constraints and for general timed languages, we concentrate to the case when only the mean duration is prescribed (and again when the length is fixed) for timed languages recognised by deterministic timed automata. For this latter case, we provide an efficient sampling algorithm we have implemented and illustrated on several examples.

This work was financed by the ANR MAVeriQ (ANR-20-CE25-0012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 53.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 70.61
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this definition the usual convention that \(0\log _2 0=1\) applies.

  2. 2.

    One could also sample the delay before the action, this would lead at the end to the same probability distribution on timed words.

  3. 3.

    The timed words of duration T have their timed vector \((t_1,\ldots ,t_n)\) belonging to the hyperplane \(t_1+\ldots +t_n=T\) which have a null volume. That is why we do not integrate over the last delay which is fixed and equal to \(T-t_1-\cdots -t_{n-1}\).

  4. 4.

    Here \(\tilde{p}\) generalises the previous concept it was used for: when p depends only on duration then \(p=\tilde{p} \circ \theta \).

References

  1. Asarin, E., Basset, N., Degorre, A.: Entropy of regular timed languages. Inf. Comput. 241, 142–176 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbot, B., Basset, N., Beunardeau, M., Kwiatkowska, M.: Uniform sampling for timed automata with application to language inclusion measurement. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 175–190. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4_13

    Chapter  Google Scholar 

  3. Barbot, B., Basset, N., Dang, T.: Generation of signals under temporal constraints for CPS testing. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019. LNCS, vol. 11460, pp. 54–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20652-9_4

    Chapter  Google Scholar 

  4. Barbot, B., Basset, N., Dang, T., Donzé, A., Kapinski, J., Yamaguchi, T.: Falsification of cyber-physical systems with constrained signal spaces. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229, pp. 420–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6_25

    Chapter  Google Scholar 

  5. Barbot, B., Basset, N., Donze, A.: Wordgen: a timed word generation tool. In: Proceedings of the 26th ACM International Conference on Hybrid Systems: Computation and Control, HSCC 2023. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3575870.3587116

  6. Basset, N.: A maximal entropy stochastic process for a timed automaton. Inf. Comput. 243, 50–74 (2015). https://doi.org/10.1016/j.ic.2014.12.006

  7. Basset, N.: Counting and generating permutations in regular classes. Algorithmica 76(4), 989–1034 (2016). https://doi.org/10.1007/s00453-016-0136-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9_7

    Chapter  Google Scholar 

  9. Bertrand, N., et al.: Stochastic timed automata. Log. Methods Comput. Sci. 10(4) (2014). https://doi.org/10.2168/LMCS-10(4:6)2014

  10. Bohlender, D., Bruintjes, H., Junges, S., Katelaan, J., Nguyen, V.Y., Noll, T.: A review of statistical model checking pitfalls on real-time stochastic models. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 177–192. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8_13

    Chapter  Google Scholar 

  11. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_20

    Chapter  Google Scholar 

  12. Cover, T.M., Thomas, J.A.: Information theory and statistics. Elem. Inf. Theory 1(1), 279–335 (1991)

    MathSciNet  Google Scholar 

  13. Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for the random generation of combinatorial structures. Comb. Probab. Comput. 13(4), 577–625 (2004). https://doi.org/10.1017/S0963548304006315

  14. Jaynes, E.T.: Information theory and statistical mechanics. II. Phys. Rev. Online Arch. (PROLA) 108(2), 171–190 (1957)

    MathSciNet  MATH  Google Scholar 

  15. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed automata. Formal Methods Syst. Des. 43(2), 164–190 (2013)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benoît Barbot or Nicolas Basset .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbot, B., Basset, N. (2023). Max-Entropy Sampling for Deterministic Timed Automata Under Linear Duration Constraints. In: Jansen, N., Tribastone, M. (eds) Quantitative Evaluation of Systems. QEST 2023. Lecture Notes in Computer Science, vol 14287. Springer, Cham. https://doi.org/10.1007/978-3-031-43835-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43835-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43834-9

  • Online ISBN: 978-3-031-43835-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation