Machine Learning and Integrated Approach

  • Chapter
  • First Online:
Hypothesis Generation and Interpretation

Part of the book series: Studies in Big Data ((SBD,volume 139))

  • 267 Accesses

Abstract

This chapter explains basic machine learning technologies other than regression as methods for hypothesis generation and then introduces integrated methods for hypothesis generation as follows.

  • Explain clustering and association rule mining as examples of unsupervised learning.

  • Explain neural networks and deep learning as examples of supervised learning.

  • Explain integrated methods for generating hypotheses by combining multiple data and multiple hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal CC (2020) Linear algebra and optimization for machine learning: a textbook. Springer

    Google Scholar 

  • Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 207–216

    Google Scholar 

  • Andina D, Vega-Corona A, Seijas JI, Torres-Garcìa J (2007) Neural network historical review. In: Andina D, Pham DT (eds) Computational intelligence. Springer. https://doi.org/10.1007/0-387-37452-3_2

  • Bahdanau D, Cho K et al (2015) Neural machine translation by jointly learning to align and translate. ar**v:1409.0473 [cs.CL]

  • Bishop CM (2006) Pattern recognition and machine learning. Springer

    Google Scholar 

  • Bottou L (2010) Large-scale machine learning with stochastic gradient descent. In: Proceedings in COMPSTAT

    Google Scholar 

  • Canguly K (2017) Learning generative adversarial networks: next-generation deep learning simplified. Packt Publishing

    Google Scholar 

  • Celko J (2014) Joe Celko's SQL for smarties: advanced SQL programming, 5th edn. Morgan Kaufmann

    Google Scholar 

  • Ester M, Kriegel HP et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining, pp 226–231

    Google Scholar 

  • Fukushima K (2019) Recent advances in the deep CNN neocognitron. In: Nonlinear theory and its applications. IEICE 10(4):304–321. https://doi.org/10.1587/nolta.10.304

  • Goodfellow IJ, Pouget–Abadie J et al (2014) Generative adversarial networks. ar**v:1406.2661 [stat.ML]

  • Graves A, Fernández S et al (2006) Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd international conference on machine learning

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn, Springer Series in Statistics. Springer

    Google Scholar 

  • Hawkins D (1980) Identification of outliers. Chapman and Hall

    Google Scholar 

  • Hirota M, Yokoyama S, Fukuta N, Ishikawa H (2010) Constraint-based clustering of image search results using photo metadata and low-level image features. In: Proceedings of the 9th IEEE/ACIS international conference on computer and information science, pp 165–178

    Google Scholar 

  • Ishikawa H, Yamane Y, Izumida Y, Kawato N (1996) An object-oriented database system Jasmine: implementation, application, and extension. IEEE Trans Knowl Data Eng 8(2):285–304. https://doi.org/10.1109/69.494167

    Article  Google Scholar 

  • Ishikawa H, Yamamoto Y (2021) Social Big Data: concepts and theory. In: Transactions on large-scale data- and knowledge-centered systems XLVII, vol 12630, Springer

    Google Scholar 

  • Ishikawa H (2015) Social Big Data mining. CRC Press

    Google Scholar 

  • Karypis G, Han E et al (1999) CHAMELEON: a hierarchical clustering algorithm using dynamic modeling. IEEE Comput 32(8):68–75

    Article  Google Scholar 

  • Khan A, Sohail A, Zahoora U et al (2020) A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev 53:5455–5516. https://doi.org/10.1007/s10462-020-09825-6

    Article  Google Scholar 

  • Lance GN, Williams WT (1966) A generalized sorting strategy for computer classifications. Nature 212. https://doi.org/10.1038/212218a0

  • Lance GN, Williams WT (1967) A general theory of classificatory sorting strategies 1, hierarchical systems. Comput J 9(4):373–380. https://doi.org/10.1093/comjnl/9.4.373

  • LeCun Y (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551

    Article  Google Scholar 

  • McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Article  MathSciNet  Google Scholar 

  • Mitchell T (1997) Machine learning. McGraw Hill

    Google Scholar 

  • Moniruzzaman ABM, Hossain SA (2013) NoSQL database: new era of databases for Big data analytics—classification, characteristics and comparison. ar**v:1307.0191 [cs.DB]

  • Page SE (2021) The model thinker—what you need to know to make data work for you. Basic Books

    Google Scholar 

  • Robbins H, Monro S (1951) A stochastic approximation method. Ann Math Stat 22(3):400–407

    Article  MathSciNet  Google Scholar 

  • Sherstinsky A (2020) Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D 404

    Google Scholar 

  • Tan M, dos Santos C et al (2015) LSTM-based deep learning models for non-factoid answer selection. ar**v:1511.04108 [cs.CL]

  • The Statistics Bureau of Japan (2022) Standard grid square and grid square code used for the statistics. https://www.stat.go.jp/english/data/mesh/02.html. Accessed 2022

  • Wagstaff K, Cardie C, Rogers S, Schrodl S (2001) Constrained K-means clustering with background knowledge. In: Proceedings of the 18th international conference on machine learning, pp 577–584

    Google Scholar 

  • Wang X, Xu Y (2019) An improved index for clustering validation based on Silhouette index and Calinski–Harabasz index. IOP Conf Ser: Mater Sci Eng 569(5):052024

    Google Scholar 

  • Wen R, Torkkola K, Narayanaswamy B, Madeka D (2017) A multi-horizon quantile recurrent forecaster. In: Proceedings of the 31st conference on neural information processing systems (NIPS2017), Time Series Workshop, 2017

    Google Scholar 

  • Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput 31(7)

    Google Scholar 

  • Zhang T, Ramakrishnan R et al (1996) BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 103–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ishikawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ishikawa, H. (2024). Machine Learning and Integrated Approach. In: Hypothesis Generation and Interpretation. Studies in Big Data, vol 139. Springer, Cham. https://doi.org/10.1007/978-3-031-43540-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43540-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43539-3

  • Online ISBN: 978-3-031-43540-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation