Ontology-Compliant Knowledge Graphs

  • Conference paper
  • First Online:
The Semantic Web: ESWC 2023 Satellite Events (ESWC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13998))

Included in the following conference series:

  • 756 Accesses

Abstract

Ontologies can act as a schema for constructing knowledge graphs (KGs), offering explainability, interoperability, and reusability. We explore ontology-compliant KGs, aiming to build both internal and external ontology compliance. We discuss key tasks in ontology compliance and introduce our novel term-matching algorithms. We also propose a pattern-based compliance approach and novel compliance metrics. The building sector is a case study to test the validity of ontology-compliant KGs. We recommend using ontology-compliant KGs to pursue automatic matching, alignment, and harmonisation of heterogeneous KGs.

Category: Early Stage PhD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balaji, B., et al.: Brick: towards a unified metadata schema for buildings. In: BuildSys 2016, pp. 41–50 (2016). https://doi.org/10.1145/2993422.2993577

  2. Boettiger, C.: RDFLib (2018). https://github.com/RDFLib/rdflib

  3. Compton, M., et al.: The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. 17, 25–32 (2012). https://doi.org/10.1016/j.websem.2012.05.003

    Article  Google Scholar 

  4. Daniele, L., et al.: Created in close interaction with the industry: the Smart Appliances REFerence (SAREF) ontology. In: FOMI 2022, pp. 100–112 (2015). https://doi.org/10.1007/978-3-319-21545-7_9

  5. de Baar, H.: von Liebig’s law of the minimum and plankton ecology (1899–1991). Prog. Oceanogr. 33(4), 347–386 (1994). https://doi.org/10.1016/0079-6611(94)90022-1

    Article  Google Scholar 

  6. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: KDD 2016, pp. 855–864 (2016). https://doi.org/10.1145/2939672.2939754

  7. Haller, A., et al.: The modular SSN ontology: a joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation. Semantic Web 10(1), 9–32 (2019). https://doi.org/10.3233/SW-180320

    Article  Google Scholar 

  8. Hammar, K., et al.: The RealEstateCore ontology. In: ISWC 2019, pp. 130–145 (2019). https://doi.org/10.1007/978-3-030-30796-7_9

  9. Hurlburt, G.F.: The knowledge graph as an ontological framework. IT Professional 23(4), 14–18 (2021). https://doi.org/10.1109/MITP.2021.3086918

    Article  Google Scholar 

  10. John, J., Gowan, M.: Project haystack data standards. In: Energy and Analytics, pp. 237–243 (2020). https://doi.org/10.1201/9781003151944-16

  11. Musen, M.A.: Protégé (2020). https://protege.stanford.edu

  12. Ontology Alignment Evaluation Initiative. http://oaei.ontologymatching.org/

  13. Perozzi, B., et al.: DeepWalk: online learning of social representations. In: KDD 2014, pp. 701–710 (2014). https://doi.org/10.1145/2623330.2623732

  14. Rasmussen, M.H., et al.: BOT: the building topology ontology of the W3C linked building data group. Semantic Web 12, 143–161 (2021). https://doi.org/10.3233/SW-200385

    Article  Google Scholar 

  15. Ribeiro, L.F., et al.: Struc2vec: learning node representations from structural identity. In: KDD 2017, pp. 385–394 (2017). https://doi.org/10.1145/3097983.3098061

  16. TopQuadrant Inc: TopBraid Composer (2022). https://www.topquadrant.com

  17. Zhao, L., et al.: Learning ontology axioms over knowledge graphs via representation learning. In: ISWC 2019 (Satellites), pp. 57–60 (2019)

    Google Scholar 

  18. Zhou, D., et al.: Enhancing knowledge graph generation with ontology resha** - Bosch case. In: ESWC 2022 (Demos/Industry) (2022). https://doi.org/10.1007/978-3-031-11609-4_45

  19. Zhou, D., et al.: Ontology resha** for knowledge graph construction: applied on Bosch welding case. In: ISWC 2022, pp. 770–790 (2022). https://doi.org/10.1007/978-3-031-19433-7_44

Download references

Acknowledgements

This project is supervised by Kerry Taylor, Sergio Rodríguez Méndez, Subbu Sethuvenkatraman, Qing Wang, and Armin Haller. The author also thanks program mentor Maria Maleshkova for providing valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangcheng Qiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qiang, Z. (2023). Ontology-Compliant Knowledge Graphs. In: Pesquita, C., et al. The Semantic Web: ESWC 2023 Satellite Events. ESWC 2023. Lecture Notes in Computer Science, vol 13998. Springer, Cham. https://doi.org/10.1007/978-3-031-43458-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43458-7_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43457-0

  • Online ISBN: 978-3-031-43458-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation