Laser Operating Parameters for Hard and Soft Tissue, Surgical and PBM Management

  • Chapter
  • First Online:
Lasers in Dentistry—Current Concepts

Part of the book series: Textbooks in Contemporary Dentistry ((TECD))

  • 283 Accesses

Abstract

New technologies introduced into clinical dentistry in recent years have added immeasurably to the quality of care that may be provided. Lasers, dental implants, CAD/CAM, and motorized endodontics have all improved clinical outcomes but require a significant investment in hardware and, most importantly, education to understand concepts and protocols. As with all medical instrumentation, it is not enough to follow basic guidelines or “preset” parameters in approaching each patient situation. A deep understanding of the technology, how it interacts with the patient’s tissues, and what variables are important to consider are necessary for a successful clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 128.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.pveducation.org/equations/photon-energy-ev. Accessed 17 Feb 2011.

  2. https://www.rp-photonics.com/rare_earth_doped_gain_media.html. Accessed 17 Feb 2011.

  3. https://www.rp-photonics.com/dye_lasers.html?s=ak. Accessed 30 Jul 2016.

  4. http://www.laserdiodesource.com/. Accessed 30 Jul 2016.

  5. http://www.olympusmicro.com/primer/java/lasers/diodelasers/index.html. Accessed 30 Jul 2016.

  6. https://spie.org/membership/spie-professional-magazine/spie-professional-archives-and-special-content/jan2010-spie-professional/co2-laser. Accessed 30 Jun 2016.

  7. http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/totint.html. Accessed 20 Sept 2015.

  8. Hale G, Querry M. Optical constants of water in the 200 nm to 20 um wavelength region. Appl Opt. 1973;12:555–63.

    Article  PubMed  Google Scholar 

  9. Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev. 2003;103:577–644.

    Article  PubMed  Google Scholar 

  10. Niemz M. Laser-tissue interactions. 3rd ed. Berlin: Springer-Verlag; 2007.

    Book  Google Scholar 

  11. Selting W. Fundamental erbium laser concepts; part II. J Laser Dent. 2010;18(3):116–22.

    Google Scholar 

  12. Ith M, Pratisto H, Altermatt HJ, Frenz M, Weber HP. Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation. Appl Phys B Lasers Opt. 1994;59:621–9.

    Article  Google Scholar 

  13. Nahen K, Vogel A. Plume dynamics and shielding of the ablation plume during Er:YAG laser ablation. J Biomed Opt. 2002;7(2):165–78.

    Article  PubMed  Google Scholar 

  14. http://vlab.amrita.edu/?sub=1&brch=189&sim=342&cnt=1. Accessed 14 Jun 2015.

  15. Hibst R, Keller U. The mechanism of Er:YAG laser induced ablation of dental hard substances. Proc SPIE. 1993;1880:165–2.

    Google Scholar 

  16. Farrar SR, Attril DC, Dickinson MR, King TA, Blinkhorn AS. Etch rate and spectroscopic ablation studies of Er:YAG laser-irradiated dentine. Appl Opt. 1997;36(22):5641–6.

    Article  PubMed  Google Scholar 

  17. Niemz M. Investigation and spectral analysis of the plasma-induced ablation mechanism of dental hydroxyapatite. Appl Phys B Lasers Opt. 1994;58:273–81.

    Article  Google Scholar 

  18. Selting W. Fundamental erbium laser concepts; part 1. J Laser Dent. 2009;17(2):89–95.

    Google Scholar 

  19. Fried D, Zuerlein M, Featherstone J, Seka W, Duhn C, McCormack S. IR laser ablation of dental enamel: mechanistic dependence on the primary absorber. Appl Surf Sci. 1998;127:852–6.

    Article  Google Scholar 

  20. Majaron B, Sustersic D, Lukac M, Skaleric U, Funduk N. Heat diffusion and debris screening in Er:YAG laser ablation of hard biological tissues. Appl Phys B Lasers Opt. 1998;66:1–9.

    Article  Google Scholar 

  21. Selting W. The effect of tip wear on Er:YAG laser ablation efficiency. J Laser Dent. 2007;15(2):74–7.

    Google Scholar 

  22. Majaron B, Prosen T, Sustercic D, Lukac M. Fiber-tip drilling of hard dental tissue with Er:YAG laser. In: Featherstone JBD, Rechmann P, Fried DS, editors. Lasers in dentistry IV, January 25–26, 1998, San Jose, CA, Proc. SPIE, vol. 3248. Bellingham, WA: SPIE—The International Society of Optical Engineering; 1998. p. 69–76.

    Google Scholar 

  23. Simanovskii D, Mackanos M, Irani A, O’Connell-Rodwell C, Contag C, Schwettman H, Palanker D. Cellular tolerance to pulsed hyperthermia. Phys Rev. 2006;74(011915):1–7.

    Google Scholar 

  24. Angiero F, Parma L, Crippa R, Benedicenti S. Diode laser (808 nm) applied to oral soft tissue lesions: a retrospective study to assess histopathological diagnosis and evaluate physical damage. LIMS. 2012;27(2):383–8.

    Google Scholar 

  25. Turner J, Hode L. Low level laser therapy, clinical particle and scientific background. Grangesberg: Prima Books; 1999.

    Google Scholar 

  26. Karu T. The science of low-power laser therapy. Gordon & Breach Science Publishers; 1998.

    Google Scholar 

  27. Karu T. Is it time to consider photobiomodulation as a drug equivalent? Photomed Laser Surg. 2013;31(5):189–91.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Woodruff L, Bounkeo J, Brannon W, Dawes K, Barham C, Waddell D, Enwemeka C. The efficacy of laser therapy in wound repair: a meta-analysis of the literature. Photomed Laser Surg. 2004;22(3):241–7.

    Article  PubMed  Google Scholar 

  29. Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic dose response in low level light therapy-an update. Dose Response. 2011;9(4):602–18.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jacques S. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58:R37–61.

    Article  PubMed  Google Scholar 

  31. Huang Y-Y, Hamblin M. Biphasic dose response in low level light therapy. Dose Response. 2009;7:358–83.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bashkatov A, Genina E, Kochubey V, Tuchin V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000nm. J Phys D Appl Phys. 2005;38:2543–55.

    Article  Google Scholar 

  33. Khan I, Tang E, Arany P. Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress. Sci Rep. 2015;5:10581.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Selting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selting, W. (2023). Laser Operating Parameters for Hard and Soft Tissue, Surgical and PBM Management. In: Coluzzi, D.J., Parker, S.P.A. (eds) Lasers in Dentistry—Current Concepts. Textbooks in Contemporary Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-031-43338-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43338-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43337-5

  • Online ISBN: 978-3-031-43338-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation