Low Temperature Systems for Buildings

  • Chapter
  • First Online:
Solar Thermal Energy Systems

Abstract

Although the solar collector is the key component in a solar thermal system, depending on the temperature range needed and the heat transfer fluid found useful for this, many other system components like controls, pumps, heat exchangers, valves etc. are needed. When we investigate the application in buildings, room heating and hot water are the dominant applications, both restricted to a low temperature range up to 60 °C. The solar cooling and climatization of buildings are a rather special application which needs higher temperatures in the collector circuit, therefore it is treated in a separate Chap. 13. A large variety of system concepts are found nowadays, with passive and active heat transport to the consumer, which are described after a classification in this chapter. The components of a collector circuit are described and specified. The planning and dimensioning of a solar thermal collector systems has many aspects and can use simple rule-of-thumb design, but generally utilizes numerical simulation tools, where the time series of temperatures and heat flows in a solar thermal system are modelled for all individual components. These design rules and the use of simulation tools are detailed in the last sections of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abokersh, M., Vallès, M., Kangkana, S., Cabeza, L., & Boer, D. (2021). Techno-economic analysis of control strategies for heat pumps integrated into solar district heating systems. Journal of Energy Storage, 42, 12.

    Article  Google Scholar 

  • Aelenei, L., Smyth, M., Platzer, W., Norton, B., Kennedy, D., Kalogirou, S., & Maurer, C. (2016). Solar thermal systems—Towards a systematic characterization of building integration. Energy Procedia, 91, 897–906. https://doi.org/10.1016/j.egypro.2016.06.256

    Article  Google Scholar 

  • Arnold, O., Mercker, O., Steinweg, J., & Rockendorf, G. (2016). Efficiency analysis of solar assisted heat supply systems in multi-family houses. In Proceedings of EuroSun. Retrieved July 1, 2022, from https://proceedings.ises.org/

  • Baack, S. (2020). Heat metering with glycol-water-mixtures. Technischen Universität Berlin.

    Google Scholar 

  • Botpaev, R., Louvet, Y., Perers, B., Furbo, S., & Vajen, K. (2016). Drainback solar thermal systems: A review. Solar Energy, 128, 41–60. https://doi.org/10.1016/j.solener.2015.10.050

    Article  Google Scholar 

  • Brandstetter, F. (2008). Ausbildungsskriptum Solarwärme. Österreichisches Forschungs- und Prüfzentrum Arsenal G.m.b.H.

    Google Scholar 

  • Braun, P., & Marko, A. (1996). Thermische Solarenergienutzung an Gebäuden. Springer.

    Google Scholar 

  • Bundesministerium für Gesundheit. (2018). Trinkwasserverordnung und Legionellen (in German). German Government. Retrieved July 4, 2022, from https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/3_Downloads/T/Trinkwasserverordnung/Stammtext_TrinkwV_und_Legionellen_250418.pdf

  • Conserval Engineering Inc.—SolarWall. (2011). Solar wall at the Fire and Emergency Services Training Institute (FESTI), ON—Canada—Greater Toronto Airport Authority. (2. W. Conserval Engineering Inc. - SolarWall, Editor) Retrieved May 3, 2023, from https://commons.wikimedia.org/wiki/File:GTAA_-_SolarWall.jpg

  • Dell, G., Nagl, M., & Egger, C. (2010). Solarguide—Manual for the planning of thermal solar systems for multi-family houses (in German). O.Ö. Energiesparverband. Austrian Solar Innovation Center, ASiC. Retrieved July 8, 2022, from https://forschung.fh-ooe.at/fileadmin/user_upload/forschung/landingpages/asic/SolarGuide.pdf

  • DIN 4708. (1994). Central heat-water-installations; terms and calculation-basis. Beuth Verlag GmbH. https://doi.org/10.31030/2480131

  • DIN 4807-2. (1991). Expansion vessels; open and closed expansion vessels used in thermic systems; calculation, requirements and test. Beuth Verlag.

    Google Scholar 

  • DIN EN 12828. (2014). Heating systems in buildings—Design for water-based heating systems.

    Google Scholar 

  • DIN EN 13831. (2007). Closed expansion vessels with built in diaphragm for installation in water. Deutsches Institut für Normung. Beuth Verlag. https://doi.org/10.31030/1381685

  • DIN EN 4108-2. (2013). Thermal protection and energy economy in buildings—Part 2: Minimum requirements to thermal insulation. Beuth Verlag GmbH.

    Google Scholar 

  • DIN EN ISO 10077-1. (2020). Thermal performance of windows, doors and shutters—Calculation of thermal transmittance—Part 1: General. Beuth Verlag GmBH.

    Google Scholar 

  • DIN EN ISO 13789. (2018). Thermal performance of buildings—Transmission and ventilation heat transfer coefficients—Calculation method. Beuth Verlag GmbH. https://doi.org/10.31030/2560190

  • DIN-EN-410. (2011). Glass in building—Determination of luminous and solar characteristics of glazing. Beuth Verlag GmbH.

    Google Scholar 

  • Duffie, J. A., Beckmann, W. A., & Blair, N. (2020). Solar engineering of thermal process. Wiley.

    Google Scholar 

  • Elci, M. (2018). Smarte und Dezentrale Solare Fernwärme-Solare Energie- und Systemforschung (in German). Fraunhofer ISE, Fraunhofer Verlag. https://publica.fraunhofer.de/handle/publica/282312

  • F-CHART Software. (2022). F-CHART—solar system analysis and design program. Retrieved July 8, 2022, from https://fchartsoftware.com/

  • Frank, E., Haller, M., Herkel, S., & Ruschenburg, J. (2010). Systematic classification of combined solar thermal and heat pump systems. In Proceedings of the EUROSUN international conference on solar heating, cooling and buildings.

    Google Scholar 

  • German Building Energy Act. (2020). Law on saving energy and using renewable energies for heating and cooling in buildings (translated from German). (G. M. Justice, Ed.) Federal Law Gazette (BGBl. I S. 1728).

    Google Scholar 

  • Hausner, R. (2005). Measurement of transparent thermal insulation at the demonstration object Graz Maria Trost (in German). Final Report, Institut für Nachhaltige Technologien, AEE-INTEC Arbeitsgemeinschaft erneuerbare Energie.

    Google Scholar 

  • Hausner, R., Fink, C., Wagner, W., Riva, R., & Hillerns, F. (2003). Entwicklung von thermischen Solarsystemen mit unproblematischem Stagantionsverhalten. Berichte aus Energie- und Umweltforschung 9/2003, Impulsprogramm Nachhaltig Wirtschaften. Bundesministerium für Verkehr, Innovation und Technologie Österreich.

    Google Scholar 

  • Henderson, T. R., Clark, C. R., Marshall, T. C., Hanson, R. L., & Hobbs, C. H. (1981). Heat degradation studies of solar heat transfer fluids. Solar Energy, 27(2), 121–128.

    Article  Google Scholar 

  • Hofegger, C. (2011). Windows doors sun protection plastic windows Ideal 6000 (in German).

    Google Scholar 

  • Hollands, K., & Lightstone, M. F. (1989). A review of low-flow, stratified-tank solar water heating systems. Solar Energy, 43, 97–105. https://doi.org/10.1016/0038-092X(89)90151-5

    Article  Google Scholar 

  • IEA SHC Task 68 Efficient Solar District Heating Systems. (2020). IEA solar heating and cooling—Task 68. https://task68.iea-shc.org/

  • IKZ HAUSTECHNIK. (2022). Seasonal heat storage systems. In S. V. KG, (Ed.), The course of the energy turnaround, they are gaining new importance. Retrieved February 27, 2023, from https://www.ikz.de/detail/news/detail/saisonale-waermespeicher/

  • ISO 9806. (2017). ISO 9806:2017 Solar energy—Solar thermal collectors—Test methods. ISO TC 180.

    Google Scholar 

  • Jenni, J. (2010). Das Sonnehaus-Grundlagenund Rüstzeug zum Bauen von Solaranlagen mit hohem Deckungsgrad aus Sicht des Praktikers (in German). Jenni Energietechnik AG. Retrieved July 1, 2022, from www.jenni.ch

  • Kerschberger, A., Platzer, W., & Weidlich, B. (1998). Transparent thermal insulation: Products, projects, planning information (translated, in German). Vieweg+Teubner Verlag.

    Google Scholar 

  • Kimmel, O., Streicher, W., & Heimrath, R. (2001). Messung und Analyse von Ursachen und Auswirkungen von Kondensationsschlägen beim Ausdampfen von großen thermischen Kollektorfeldern. Jubiläumsfonds der Österreichischen Nationalbank.

    Google Scholar 

  • Köhl, M., Heck, M., Brunold, S., Frei, U., Carlsson, B., & Möller, K. (2004). Advanced procedure for the assessment of the lifetime of solar absorber coatings. Solar Energy Materials and Solar Cells, 81(1–4), 275–289. https://doi.org/10.1016/j.solmat.2004.01.041

    Article  Google Scholar 

  • Kreith, F., & Goswami, D. Y. (2005). The CRC handbook of mechanical engineering (2nd ed.). CRC-Press LLC.

    Google Scholar 

  • Kuhn, T. E., Bühler, C., & Platzer, W. J. (2001). Evaluation of overheating protection with sun-shading systems. Solar Energy, 69(Supplement 6), 59–74. https://doi.org/10.1016/S0038-092X(01)00017-2

    Article  Google Scholar 

  • Kuhn, T., Goerdt, W., Wienold, J., & Platzer, W. J. (2000). Complete characterization of complex glazings and shading devices.

    Google Scholar 

  • Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J. E., Hvelplund, F., & Mathiesen, B. V. (2014). 4th Generation District Heating (4GDH). Energy, 68, 1–11. https://doi.org/10.1016/j.energy.2014.02.089

    Article  Google Scholar 

  • Lustig, K. (2002). Experimentelle Untersuchungen zum Stillstandsverhalten thermischer Solaranlagen. Dissertation, Universität Karlsruhe, Fak. Maschinenbau, Karlsruhe.

    Google Scholar 

  • Marstal Fjernvarme a.m.b.a. (2023). Marstal district heating. Retrieved February 27, 2023, from https://www.solarmarstal.dk/

  • Marx, R., Bauer, D., & Drueck, H. (2014). Energy efficient integration of heat pumps into solar district heating systems with seasonal thermal energy storage. Energy Procedia, 57, 2706–2715.

    Article  Google Scholar 

  • Meier, F. (2009). Stromsparende Pumpen für Heizungen und Solaranlagen. BINE Projektinfo.

    Google Scholar 

  • Mesquita, L. C., McClenahan, D., Thornton, J. W., Carriere, J., & Wong, B. (2017). Drake landing solar community: 10 Years of operation. In ISES solar world congress (p. 12). https://doi.org/10.18086/swc.2017.06.09

  • Miara, M., Günther, D., Langner, R., & Helmling, S. (2014). Efficiency of heat pumps in real operating conditions—Results of three monitoring campaigns in Germany. REHVA Journal 7–12.

    Google Scholar 

  • Nielsen, J. E. (2014). The booming market for solar district heating—Opportunities and challenges. In Proc. SHC conference.

    Google Scholar 

  • Nielsen, J. E., & Sørensen, P. A. (2016). Renewable district heating and cooling technologies with and without seasonal storage. In S.-H. G., Renewable heating and cooling (pp. 197–220). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-213-6.00009-6

  • NRCAN. (2022). RETScreen—The RETScreen® Clean energy management software. Retrieved October 24, 2022, from https://www.nrcan.gc.ca/maps-tools-and-publications/tools/modelling-tools/retscreen/7465

  • Oliva, A., Kim, Y., Lämmle, M. H., Ripka, A., & Gebele, C. (2020). Measurement results of a district heating system with decentralized incorporated solar thermal energy for an energy, cost effective and electricity grid favorable intermitting operation. In I. S. Society (Ed.), Proceedings of EuroSun 2020 (p. 11). https://doi.org/10.18086/eurosun.2020.02.06

  • Platzer, W. J. (1988). Solare Transmission und Wärmetransportmechanismen bei Transparente Wärmedämmmaterialien. Fakultät für Physik. Albert-Ludwigs-Universität.

    Google Scholar 

  • Platzer, W. J. (1993). A simple monthly calculation procedure for transparently insulated houses. In Proceedings of the 6th international meeting TI6. Transparent insulation technology, 3–5 June 1993, (pp. 62–65). Franklin Company Consultants Ltd.

    Google Scholar 

  • Platzer, W. J. (2003). Properties and application of switchable facade technology. In Proceedings of the 26th ISES solar world congress, 16–19 July 2003.

    Google Scholar 

  • Platzer, W. J. (2005). Die Solare Umweltwand mit Transparenter Wärmedämmung (TWD). In E. E.-u. GmbH (Ed.), Internationale Kongressmesse RENEXPO.

    Google Scholar 

  • Platzer, W. J. (2021). Total performance assessment method for industrial process heat systems. In Proceedings of the ISES solar world congress 2021 (pp. 1–9). International Solar Energy Society.

    Google Scholar 

  • Platzer, W., & Goerdt, W. (2000). Solar walls with ventilated transparent insulation. Performance properties, problems and materials. In 2000, Proc. Eurosun, international conference on solar heating, cooling and buildings, 19–22 June 2000.

    Google Scholar 

  • Rossiter, W. J. (1985). An investigation of the degradation of aqueous ethylene. Glycol and propylene glycol solutions using ion chromatography. Solar Energy Materials, 11, 455–467.

    Article  Google Scholar 

  • Sayegh, M. A., Jadwiszczak, P., Axcell, B. P., Niemierka, E., Bryś, K., & Jouhara, H. (2018). Heat pump placement, connection and operational modes in European district heating. Energy and Buildings, 166, 122–144. https://doi.org/10.1016/j.enbuild.2018.02.006

    Article  Google Scholar 

  • Scheuren, J. (2008). Untersuchungen zum Stagnationsverhalten solarthermischer Kollektorfelder. Universität Kassel.

    Google Scholar 

  • Shrestha, N. L., Frotscher, O., Urbaneck, T., Oppelt, T., Göschel, T., Uhlig, U., & Frey, H. (2018). Hermal and hydraulic investigation of large-scale solar collector field. Energy Procedia, 149, 605–614. https://doi.org/10.1016/j.egypro.2018.08.225

    Article  Google Scholar 

  • Solites—Steinbeis Forschungsinstitut für solare und zukunftsfähige thermische Energiesysteme. (2022). Retrieved February 27, 2023, from https://www.solites.de/projekte/

  • Sparber, W., Vajen, K., Herkel, S., Ruschenburg, J., Thür, A., Fedrizzi, R., & D’Antoni, M. (2011). Overview on solar thermal plus heat pump systems and review of monitoring. IEA Task 44/Annex 38 publication/outcome, International Energy Agency.

    Google Scholar 

  • Stazi, F. (2017). Chapter Five—Passive envelopes. In F. Stazi (Eds.), Thermal inertia in energy efficient building envelopes (pp. 175–255). Butterworth-Heinemann.

    Google Scholar 

  • Stegmeier, T., Linke, M., & Planck, H. (2009). Bionics in textiles: Flexible and translucent thermal insulations for solar thermal applications. Philosophical Transactions of the Royal Society A. 1749–1758.

    Google Scholar 

  • Stephan, P., Kabelac, S., & Kind, M., Mewes, D. (2019). VDI-Wärmeatlas (12th ed.). Springer Vieweg.

    Google Scholar 

  • TRNSYS Coordinator. (2017). TRNSYS-A TRaNsient SYstems Simulation Program. (U. o. Wisonsin, Ed.). Retrieved July 8, 2022, from https://sel.me.wisc.edu/trnsys/

  • Tschopp, D., Tian, Z., Berberich, M., Fan, J., Perers, B., & Furbo, S. (2020). Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark, China, Germany and Austria. Applied Energy, 270, 114997. https://doi.org/10.1016/j.apenergy.2020.114997

    Article  Google Scholar 

  • Tyforop Chemie GmbH. (2011). Datenblätter gebrauchsfertiger, rückstandsfrei verdampfender Spezial-Wärmeträgerflüssigkeit für Solaranlagen mit hoher und höherer thermischer Belastung.

    Google Scholar 

  • Valentin Software. (2022). T*SOL—Software. Retrieved July 4, 2022, from https://valentin-software.com/produkte/tsol/

  • Val-Matic Valve & Manufacturing Corporation. (2020). Silent check valves—Product information. Retrieved February 27, 2023, from https://www.valmatic.com/

  • VDI 4655. (2021). Reference load profiles of residential buildings for power, heat and domestic hot water as well as reference generation profiles for photovoltaic plants. Beuth Verlag GmbH.

    Google Scholar 

  • Velasolaris. (2020). Polysun – Energiesysteme präzise simulieren und effizient Planen. Retrieved July 4, 2022, from https://www.velasolaris.com/software/

  • Vogelsanger, P. (2005). Neue Systemideen aus Europa. NEGST WP1: Next generation of solar systems (p. 36p). AEE-Intec. Retrieved July 1, 2022, from https://www.aee-intec.at/0uploads/dateien213.pdf

  • Wang, Y., Shukla, A., & Liu, S. (2016). A state of art review on methodologies for heat transfer and energy flow characteristics of the active building envelopes. Renewable and Sustainable Energy Reviews, 78, 1102–1116. https://doi.org/10.1016/j.rser.2017.05.015

    Article  Google Scholar 

  • Wedel, S., & Bezzel, E. (2000). Heat transfer fluids for solar DHW systems (2. Auflage ed.). (D. T. Institute, Ed.) Solar Energy Centre Denmark.

    Google Scholar 

  • Weiss, W., & Spörk-Dürr, M. (2022). Solar heat worldwide. Global market development and trends 2021. Detailed market figures 2020. In I.-S. Programme (Ed.). Edition 2022. AEE—Institute for Sustainable Technologies. Retrieved July 8, 2022, from https://www.iea-shc.org/Data/Sites/1/publications/Solar-Heat-Worldwide-2022.pdf

  • WELL spol. s.r.o. (2011). Product catalogue.

    Google Scholar 

  • Welz, C., Hermann, M., Kramer, K., & Thoma, C. (2015). AIRCOW program. Fraunhofer ISE.

    Google Scholar 

  • Welz, C., Maurer, C., Di Lauro, P., Stryi-Hipp, G., & Hermann, M. (2014). Mass flow, pressure drop, and leakage dependent modeling and characterization of solar air collectors. Energy Procedia, 48, 250–263.

    Article  Google Scholar 

  • Wieland-Werke, A. G. (2023). Heat exchanger—Product information.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Stieglitz .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stieglitz, R., Platzer, W. (2024). Low Temperature Systems for Buildings. In: Solar Thermal Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-43173-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43173-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43172-2

  • Online ISBN: 978-3-031-43173-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation