Concentrating Collectors

  • Chapter
  • First Online:
Solar Thermal Energy Systems

Abstract

High-temperature collectors using optical concentration and tracking, are described in this chapter. The determination and optimization of the optical performance of line-focusing and point-focusing technologies is key for reaching high temperatures. We classify therefore the collectors by their optical concentrator principle. Although also the selected heat transfer fluid has an impact on the temperature level which can be achieved, due to fluid stability and receiver material durability issues, this aspect is only treated in Chap. 10 on high temperature collector systems and fields. Here, the focus is on the main components and designs of individual collectors. As solar radiation is transformed into heat in the receiver, the design of this element is mainly responsible for minimizing the thermal losses. However, thermal losses play a minor role, the higher the optical concentration. We present receiver designs, determine the selection of materials, and define the performance. Finally, some line- and point-focusing collector types are compared with respect to their optical performance characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 128.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, A., Montes, M., Piera, M., & Martínez-Val, J. (2012). Solar radiation concentration features in Linear Fresnel Reflector arrays. Energy Conversion and Management, 54, 133–144. https://doi.org/10.1016/j.enconman.2011.10.010

  • Abbas, R., Montes, M., Rovira, A., & Martinez-Val, J. (2016). Parabolic trough collector or linear Fresnel collector? A comparison of optical features including thermal quality based on commercial solutions. Solar Energy, 124, 198–215. https://doi.org/10.1016/j.solener.2015.11.039

    Article  Google Scholar 

  • Abbas, R., Sebastián, A., Montes, M., & Valdés, M. (2018). Optical features of linear Fresnel collectors with different secondary reflector technologies. Applied Energy, 232, 386–397. https://doi.org/10.1016/j.apenergy.2018.09.224

    Article  Google Scholar 

  • ALANOD GmbH & Co. KG. (2021). Efficiency-solar-surface. Product catalogue, Egerstr. 12· 58256 Ennepetal. Germany. Retrieved December 10, 2022, from www.alanod-solar.com

  • ASTM G173-03. (2020). Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface, West Conshohocken, PA, 19428-2959. ASTM Headquarters. https://doi.org/10.1520/G0173-03R20

  • Avila-Marin, A. L. (2011). Volumetric receivers in solar thermal power plants with central receiver system technology: A review. Solar Energy, 85, 891–910. https://doi.org/10.1016/j.solener.2011.02.002

  • Balaji, S., Reddy, K., & Sundararajan, T. (2016). Optical modelling and performance analysis of a solar LFR receiver system with parabolic and involute secondary reflectors. Applied Energy, 179, 1138–1151. https://doi.org/10.1016/j.apenergy.2016.07.082

    Article  Google Scholar 

  • Bendt, P., Rabl, A., Gaul, H. W., & Reed, K. A. (1979). Optical analysis and optimization of line focus collectors. In: NASA STI/Recon Technical Report N 80.

    Google Scholar 

  • Bellos, E. (2019). Progress in the design and the applications of linear Fresnel reflectors—A critical review. Thermal Science and Engineering Progress, 10, 112–137. https://doi.org/10.1016/j.tsep.2019.01.014

    Article  Google Scholar 

  • Bernhard, R., de LaLaing, J., Kistner, R., Eck, M., Eickhoff, M., Feldhoff, J., … Morin, G. (2009). Linear fresnel collector demonstration at the PSA—Operation and investigation. In Proceedings of 15th SolarPACES Conference, Berlin, 15–18 September 2009.

    Google Scholar 

  • Blackmon, J. B. (2020). Heliostat size optimization for central receivers. In K. Lovegrove, & W. Stein (Eds.), Concentrating solar power technology (2nd ed., pp. 585–632). Elsevier Woodhead Publishing.

    Google Scholar 

  • Boerema, N., Morrison, G., Taylor, R., & Rosengarten, G. (2012). Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems. Solar Energy, 86, 2293–2305. https://doi.org/10.1016/j.solener.2012.05.001

    Article  Google Scholar 

  • Brahma Kumaris. (2011). India One. Retrieved from https://solar.brahmakumaris.com/links/

  • BraytonEnergy LLC. (2022). SolarCAT Solar Compressed Air Turbine. 75B Lafayette Road, Hampton, NH 03842. Retrieved December 21, 2022, from https://www.braytonenergy.net/our-projects/solarcat/

  • BrightSource Energy Inc. (2023). 1999 Harrison Street Suite 2150, Oakland, CA 94612, California, USA. Retrieved February 27, 2023, from https://www.brightsourceenergy.com/breakthrough-technologies

  • Brossard, D. (2010, May 16). Heliostat—Maurya Sheraton Hotel—New Delhi (Flickr.com, Ed.) Retrieved May 3, 2023, from https://www.flickr.com/photos/string_bass_dave/4609871733/in/photostream/

  • Burkholder, F., & Kutscher, C. F. (2008). Heat-loss testing of Solel’s UVAC3 parabolic trough receiver: Technical report. In Heat-loss testing of Solel's UVAC3 parabolic trough receiver: Technical Report. National Renewable Energy Laboratory.

    Google Scholar 

  • Burkholder, F., & Kutscher, C. (2009). Heat loss testing of Schott’s 2008 PTR70 Parabolic Trough Receiver. National Renewable Energy Lab. (NREL), Golden, CO, USA. https://doi.org/10.2172/1369635

  • Cagnoli, M., Mazzei, D., Procopio, M., Russo, V., Savoldi, L., & Zanino, R. (2018). Analysis of the performance of linear Fresnel collectors: Encapsulated vs. evacuated tubes. Solar Energy, 164, 119–138. https://doi.org/10.1016/j.solener.2018.02.037

    Article  Google Scholar 

  • Canavarro, D., Chaves, J., & Collares-Pereira, M. (2014). Simultaneous multiple surface method for Linear Fresnel concentrators with tubular receiver. Solar Energy, 110, 105–116. https://doi.org/10.1016/j.solener.2014.09.002

    Article  Google Scholar 

  • Cao, F., McEnaney, K., Chen, G., & Ren, Z. (2014). A review of cermet-based spectrally selective solar absorbers. Energy & Environmental Science, 7(5), 1615–1627.

    Google Scholar 

  • Cardemil, J., Starke, A., Scariot, V., Grams, I., & Colle, S. (2014). Evaluating solar radiation attenuation models to assess the effects of climate and geographical location on the heliostat field efficiency in Brazil. Energy Procedia, 49, 1288–1297. https://doi.org/10.1016/j.egypro.2014.03.138

    Article  Google Scholar 

  • Chaves, J., & Collares-Pereira, M. (2010). Etendue-matched two-stage concentrators with multiple receivers. Solar Energy, 84(2), 196–207. https://doi.org/10.1016/j.solener.2009.10.022

    Article  Google Scholar 

  • Conlon, W. M., Johnson, P., & Hanson, R. (2011, July 12–14). Superheated steam from CLFR solar steam generators. In Proceedings of ASME 2011 Power Conference (Vol. 1, pp. 301–307). https://doi.org/10.1115/POWER2011-55174

  • CosinSolar. (2023). SUPCON SOLAR Delingha 10MW Tower CSP Plant. No. 307, Liuhe Road, Binjianga, District, Hangzhou, Zhejiang, China. Retrieved Febraury 27, 2023, from http://www.supconsolar.com/en/index/index.html

  • Coventry, J., Andraka, C., Pye, J., Blanco, M., & Fisher, J. (2015). A review of sodium receiver technologies for central receiver solar power plants. Solar Energy, 122, 749–762. https://doi.org/10.1016/j.solener.2015.09.023

    Article  Google Scholar 

  • Coventry, J., Campbell, J., Xue, Y., Hall, C., Kim, J.-S., Pye, J., … Beath, A. (2016). Heliostat cost down sco** study. Final Report, ASTRI—Australian Solar Thermal Research Initiative.

    Google Scholar 

  • Davis, J. R. (2000). Nickel, Cobalt, and their alloys-ASM specialty handbook (Vol. 1), Materials Park, OH 44073, USA. ASM International. Retrieved from www.asminternational.org

  • del Río, A., Korzynietz, R., Brioso, J., Gallas, M., Ordóñez, I., Queroa, M., & Diaz, C. (2015). Soltrec–Pressurized volumetric solar air receiver technology. Energy Procedia, 69, 360–368. https://doi.org/10.1016/j.egypro.2015.03.042

    Article  Google Scholar 

  • Deutsches Zentrum für Luft- und Raumfahrt (DLR). (2008). Solarstrahlungsempfänger (Solarreceiver) auf dem Turmkraftwerk in Almería. Institut für Technische Thermodynamik, Solarforschung.

    Google Scholar 

  • Di Canio, D., Tretyl, W., Jur, F., & Watson, C. (1977–1979). Line-focus solar thermal central receiver research study. Report DOE/ET/20426-1, FMC Corporation, Santa Clara, CA.

    Google Scholar 

  • Díez de los Ríos Ramos, N. (2018). Technology developments for the Alkali Metal Thermal to Electric Converter (AMTEC) Test Facility. Dissertation, Faculty of Mechanical Engineering, Karlsruher Institut für Technologie (KIT), Karlsruhe Germany.

    Google Scholar 

  • Dunham, M., & Iverson, B. (2014). High-efficiency thermodynamic power cycles for concentrated solar power systems. Renewable and Sustainable Energy Reviews, 30, 758–770. https://doi.org/10.1016/j.rser.2013.11.010

    Article  Google Scholar 

  • Eddhibi, F., Amara, M., Balghouthi, M., Qoaider, L., & Guizani, A. (2017). Analytic optical design of a Linear Fresnel solar collector with variable parameters. Journal of Materials and Environmental Sciences, 11(8), 4068–4084.

    Google Scholar 

  • Ermanoski, I., Siegel, N., & Stechel, E. B. (2013). A new reactor concept for efficient solar-thermochemical fuel production. Journal of Solar Energy Engineering, 135(3), 031002 (10 p.). https://doi.org/10.1115/1.4023356

  • Flesch, J. (2021). LBE-cooled tube receiver performance—Design aspects and high-flux operation in a solar furnace. Dissertation, Karlsruhe Institute of Tchnology (KIT), Faculty Chemical Egnigneering and Process Technology, Karlsruhe.

    Google Scholar 

  • Forsberg, C., Peterson, P. F., & Zhao, H. (2007). High-temperature liquid-fluoride-salt closed-brayton-cycle solar power towers. Journal of Solar Energy Engineering, 129(2), 141–146. https://doi.org/10.1115/1.2710245

    Article  Google Scholar 

  • García-Cortés, S., Bello-García, A., & Ordóñez, C. (2012). Estimating intercept factor of a parabolic solar trough collector with new supporting structure using off-the-shelf photogrammetric equipment. Applied Energy, 92, 815–821. https://doi.org/10.1016/j.apenergy.2011.08.032

  • Gholamalizadeh, E., & Chung, J. D. (2017). Exergy analysis of a pilot parabolic solar dish-stirling system. Entropy, 19(10), 509 (12 p.). https://doi.org/10.3390/e19100509

  • Guerreiro, L., Canavarro, D., & Collares Pereira, M. (2015). Efficiency improvement and potential LCOE reduction with an LFR-XX SMS plant with storage. Energy Procedia, 69, 868–878. https://doi.org/10.1016/j.egypro.2015.03.112

  • Hafez, A., Soliman, A., El-Metwally, K., & Ismail, I. (2017). Design analysis factors and specifications of solar dish technologies for different systems and applications. Renewable and Sustainable Energy Reviews, 67, 1019–1036. https://doi.org/10.1016/j.rser.2016.09.077

    Article  Google Scholar 

  • Heimsath, A., & Nitz, P. (2019). The effect of soiling on the reflectance of solar reflector materials—Model for prediction of incidence angle dependent reflectance and attenuation due to dust deposition. Solar Energy Materials and Solar Cells, 195, 258–268. https://doi.org/10.1016/j.solmat.2019.03.015

    Article  Google Scholar 

  • Heimsath, A., Bern, G., van Rooyen, D., & Nitz, P. (2014a). Quantifying optical loss factors of small linear concentrating collectors for process heat application. Energy Procedia, 48, 77–86. https://doi.org/10.1016/j.egypro.2014.02.010

    Article  Google Scholar 

  • Heimsath, A., Cuevas, F., Hofer, A., Nitz, P., & Platzer, W. J. (2014b). Linear Fresnel collector receiver. Energy Procedia, 49, 386–397.

    Article  Google Scholar 

  • Heimsath, A., Cuevas, F., Hofer, A., Nitz, P., & Platzer, W. J. (2014c). Linear Fresnel collector receiver: Heat loss and temperatures. Energy Procedia, 49, 386–397. https://doi.org/10.1016/j.egypro.2014.03.042

    Article  Google Scholar 

  • Hering, W., Stieglitz, R., & Wetzel, T. (2012). Application of liquid metals for solar energy systems. EPJ Web of Conferences, 33, 7. https://doi.org/10.1051/epjconf/20123303003

    Article  Google Scholar 

  • Hildebrandt, C. (2009). Hochtemperaturstabile Absorberschichten für linear konzentrierende solarthermische Kraftwerke. Dissertation, Universität Stuttgart, Institut für Thermodynamik und Wärmetechnik, Stuttgart.

    Google Scholar 

  • Ho, C. K. (2016). A review of high-temperature particle receivers for concentrating solar power. Applied Thermal Engineering, 109, 958–969. https://doi.org/10.1016/j.applthermaleng.2016.04.103

    Article  Google Scholar 

  • Ho, C. K. (2017). Advances in central receivers for concentrating solar applications. Solar Energy, 152, 38–56. https://doi.org/10.1016/j.solener.2017.03.048

    Article  Google Scholar 

  • Ho, C., & Iverson, B. D. (2014). Review of high-temperature central receiver designs for concentrating solar power. Renewable and Sustainable Energy Reviews, 29, 835–846. https://doi.org/10.1016/j.rser.2013.08.099

    Article  Google Scholar 

  • IEC 62862-5-2. (2022). Solar thermal electric plants Part 5-2. Systems and components. General requirements and test methods for large-size linear Fresnel collectors.

    Google Scholar 

  • Industrial Solar GmbH. (2022). Fresnel Collector LF-11 Datasheet. Basler Str. 115, D-79115 Freiburg, Germany. RetrievedMarch 29, 2022, from https://www.industrial-solar.de/en/technologies/fresnel-collector/

  • IRENA -International Renewable Energy Agency. (2013). Renewable Power Generation Costs in 2012: An overview. Abu Dhabi, C67 Office Building, Khalidiyah (32nd) Street, United Arab Emirates. Retrieved from www.irena.org

  • ISO 9845-1. (1992). Solar energy—Reference solar spectral irradiance at the ground at different receiving conditions—Part 1: Direct normal and hemispherical solar irradiance for air mass 1,5. ICS:27.160 Solar energy engineering.

    Google Scholar 

  • Janotte, N., Feckler, G., Kötter, J., Decker, S., Herrmann, U., Schmitz, M., & Lüpfert, E. (2014). Dynamic performance evaluation of the HelioTrough® collector demonstration loop-towards a new benchmark in parabolic trough qualification. Energy Procedia, 49, 109–117. https://doi.org/10.1016/j.egypro.2014.03.012

    Article  Google Scholar 

  • Kalbhor, A. (2014). Modified solar central receiver in concentrated solar power systems. International Journal of Engineering and Technical Research (IJETR), 12(2).

    Google Scholar 

  • Karni, J., Kribus, A., Doron, P., Rubin, R., Fiterman, A., & Sagie, D. (1997). The DIAPR: A high-pressure, high-temperature solar receiver. Journal of Solar Energy Engineering—Transactions of the ASME, 119, 74–78. https://doi.org/10.1115/1.2871853

  • Kesselring, P., & Selvage, C. (1986). The IEA/SSPS solar thermal power plants—Facts and figures—Volume 1: Central Receiver System (CRS). International Energy Agency (IEA).

    Google Scholar 

  • Kincaid, N., Mungas, G., Kramer, N., Wagner, M., & Zhu, G. (2018). An optical performance comparison of three concentrating solar power collector designs in linear Fresnel, parabolic trough, and central receiver. Applied Energy, 231, 1109–1121. https://doi.org/10.1016/j.apenergy.2018.09.153

    Article  Google Scholar 

  • Korzynietz, R., Brioso, J., del Río, A., Quero, M., Gallas, M., Uhlig, R., … Teraji, D. (2016). Solugas—Comprehensive analysis of the solar hybrid Brayton plant. Solar Energy, 135, 578–589. https://doi.org/10.1016/j.solener.2016.06.020

  • Kurup, P., & Turchi, C. S. (2015). Parabolic trough collector cost update for the system advisor model (SAM). 15013 Denver West Parkway,Golden, CO 80401. National Renewable Energy Laboratory (NREL). Retrieved from https://www.nrel.gov/docs/fy16osti/65228.pdf

  • Lee, C.-Y., Chou, P.-C., Chiang, C.-M., & Lin, C.-F. (2009). Sun tracking systems: A review. Sensors, 9, 3875–3890. https://doi.org/10.3390/s90503875

  • Lüpfert, E., Zarza-Moya, E., Geyer, M., Nava, P., Langenk, J., Schiel, W., … Mandelberg, E. (2003). Eurotrough collector qualification complete—Performance test results from PSA. In Proceedings of ISES Solar World Congress (p. 12), June 14–19, Göteborg, Sweden

    Google Scholar 

  • Mertins, M. (2006). Technische und wirtschaftliche Analyse von horizontalen Fresnel-Kollektoren. Dissertation, Universität Karlsruhe, Faculty for Mechanical Engineering, Karlsruhe.

    Google Scholar 

  • Mills, D. R., & Morrison, G. (2000). Compact Linear Fresnel reflector solar thermal powerplants. Solar Energy, 68(3), 263–283. https://doi.org/10.1016/S0038-092X(99)00068-7

    Article  Google Scholar 

  • Moga, D., Sita, I. V., Stroia, N., Dobra, P., Moga, R., & Petreus, D. (2015). Sensing and control strategies in tracking solar systems. In Proceedings of International Conference on Control Systems and Science (pp. 989–995), 23–25 May 2015. https://doi.org/10.1109/CSCS.2015.143

  • Montes, M. J., Abbas, R., Muñoz, M., Muñoz-Antón, J., & Martínez-Val, J. (2017). Advances in the linear Fresnel single-tube receivers: Hybrid loops with non-evacuated and evacuated receivers. Energy Conversion and Management, 149, 318–333. https://doi.org/10.1016/j.enconman.2017.07.031

    Article  Google Scholar 

  • Morin, G. (2005). Weiterführende Forschung und Entwicklung zum Fresnel-Konzept sowie Vorbereitung eines Demonstrationsvorhabens. Report MAO1-GM-0512-E02, Fraunhofer ISE, Freiburg.

    Google Scholar 

  • Morin, G., Mertins, M., Kirchberger, J., & Selig, M. (2011). SuperNOVA–construction, control & performance of steam superheating linear Fresnel collector. In Proceedings of 17th SolarPACES International Symposium. Granada, Spain.

    Google Scholar 

  • Morin, G., Dersch, J., Platzer, W., Eck, W., & Häberle, A. (2012). Comparison of Linear Fresnel and parabolic trough collector plants. Solar Energy, 86, 1–12. https://doi.org/10.1016/j.solener.2011.06.020

  • Nagarajan, S., & Barshilia, H. (2010). Review of sputter deposited mid- to high- temperature solar selective coatings for flat plate/evacuated tube collectors and solar thermal power generation applications. Bangalore 560017, India. National Space Laboratories.

    Google Scholar 

  • National Renewable Energy Laboratory-NREL. (2017, August 4). Retrieved May 3, 2023, from Mirror Field Crescent Dunes Solar Thermal Facility. https://www.flickr.com/photos/nrel/35965146980/in/photostream/

  • Novatec Solar. (2012). Turnkey Solar Boiler. Karlsruhe, Germany. Retrieved December 12, 2021, from https://www.energy-xprt.com/products/solar-boiler-251465

  • Ortona, A., Yoon, D., Fend, T., & Smirnova, O. (2015). Tubular Si-infiltrated SiCf/SiC composites for solar receiver application—Part 2: Thermal performance analysis and prediction. Solar Energy Materials & Solar Cells, 140, 382–387. https://doi.org/10.1016/j.solmat.2015.04.034

    Article  Google Scholar 

  • Pfahl, A., Coventry, J., Röger, M., Wolfertstetter, F., Vásquez-Arango, J.-F., Gross, F., … Liedke, P. (2017). Progress in heliostat development. Solar Energy, 152, 3–37. https://doi.org/10.1016/j.solener.2017.03.029

  • Pitz-Paal, R., Morhenne, J., & Fiebig, M. (1991). A new concept of a selective solar receiver for high temperature applications. Solar Energy Materials, 24, 293–306. https://doi.org/10.1016/0165-1633(91)90070-2

    Article  Google Scholar 

  • Platzer, W., Heimsath, A., Hildebrandt, C., & Georg, A. (2008). Quality control of concentrating collector components for the optimization of performance. In Proceedings of 14th SolarPACES International Symposium, March 4–7, 2008, Las Vegas, USA.

    Google Scholar 

  • Pottler, K., Ulmera, S., Lüpfert, E., Landmann, M., Röger, M., & Prahl, C. (2014). Ensuring performance by geometric quality control and specifications for parabolic trough solar fields. Energy Procedia, 49, 2170–2179. https://doi.org/10.1016/j.egypro.2014.03.230

  • Poživil, P., Agab, V., Zagorskiy, A., & Steinfeld, A. (2014). A pressurized air receiver for solar-driven gas turbines. Energy Procedia, 49, 498–503. https://doi.org/10.1016/j.egypro.2014.03.053

    Article  Google Scholar 

  • Pye, J., Morrison, G., & Behnia, M. (2003). Modelling of cavity receiver heat transfer for the Compact Linear Fresnel reflector. In Proceedings of ISES Solar World Congress-Solar Energy for a Sustainable Future (p. 10), 26–29 November 2003. Gothenburg, Sweden.

    Google Scholar 

  • Qiu, Y., He, Y.-L., Cheng, Z., & Wang, K. (2015). Study on optical and thermal performance of a linear Fresnel solar reflector using molten salt as HTF with MCRT and FVM methods. Applied Energy, 146, 162–173. https://doi.org/10.1016/j.apenergy.2015.01.135

    Article  Google Scholar 

  • Rabl, A. (1985). Active solar collectors and their applications (1st ed.). Oxford University Press.

    Google Scholar 

  • Rabl, A., & Winston, R. (1976). Ideal concentrators for finite sources and restricted exit angles. Applied Optics, 15(11), 2880–2883. https://doi.org/10.1364/AO.15.002880

    Article  Google Scholar 

  • Reiser, J., Franke, P., Weingärtner, T., Hoffmann, J., Hoffmann, A., & Rieth, M. (2015). Tungsten laminates made of ultrafine-grained (UFG) tungsten foil—Ageing of tungsten–titanium (W–Ti) laminates. International Journal of Refractory Metals and Hard Materials, 51, 264–274. https://doi.org/10.1016/j.ijrmhm.2015.04.032

    Article  Google Scholar 

  • Ricklin, P., Slack, M., Rogers, D., & Huibregtse, R. (2014). Commercial readiness of eSolar next generation heliostat. Energy Procedia, 49, 201–208. https://doi.org/10.1016/j.egypro.2014.03.022

  • Riffelmann, K., Richert, T., Nava, P., & Schweitzer, A. (2014). Ultimate Trough®—A significant step towards cost-competitive CSP. Energy Procedia, 49, 1831–1839. https://doi.org/10.1016/j.egypro.2014.03.194

    Article  Google Scholar 

  • Schiel, W., & Keck., T. (2012). Parabolic dish concetrating solar power systems. In K. Lovegrove, & W. Stein (Eds.), Concentrating solar power technology (pp. 284–321). 80 High Street, Sawston, Cambridge CB22 3HJ, UK. Woodhead Publishing.

    Google Scholar 

  • Schiel, W., Hunt, B., Keck, T., Schweitzer, A., Weinrebe, G., & Partner, S. B. (2004, May 25–27). Solar thermal power plants for central or distributed electricity generation. In Proceedings of Power-Gen Europe (p. 22).

    Google Scholar 

  • SCHOTT Solar CSP GmbH. (2013). Advanced qualification methods for parabolic trough receivers. Riyadh, November 20th 2013, Kingdom Saudi Arabia. Retrieved December 20, 2022, from https://www.dlr.de/sf/Portaldata/73/Resources/dokumente/veranstaltungen/saudisch-d_ws_riad_11-2013/SCHOTT_Solar_Saudi-German_CSP-WS_Riad_20112013.pdf

  • SCHOTT Technical Glass Solutions GmbH. (2018). BOROFLOAT® 33 & Functional Coatings-Product information. Technical Information sheet, Otto-Schott-Strasse 13,07745 Jena,Germany. Retrieved December 18, 2022, from www.schott.com/borofloat/coatings

  • Schöttll, P., Rohani, S., Leonardi, E., Pisani, L., Les, I., Mutuberria, M., & Nitz, P. (2019). Solar field heliostat selection based on polygon optimization and boundaries. AIP Conference Proceedings, 2126, 8. https://doi.org/10.1063/1.5117565

    Article  Google Scholar 

  • Sharma, V., Nayak, J. K., & Kedare, S. (2015). Comparison of line focusing solar concentrator fields considering shading and blocking. Solar Energy, 122, 924–939. https://doi.org/10.1016/j.solener.2015.10.011

    Article  Google Scholar 

  • Siemens Concentrated Solar Power, Ltd. (2011). Siemens UVAC 2010. http://www.energy.siemens.com/hq/pool/hq/power-generation/renewables/solar-power-solutions/concentrated-solar-power/downloads/E50001-W320-A104-V2-4A00_DA_UVACreceiver_US_ohne%20Israel.pdf. Siemens AG, Energy Sector, Freyeslebenstrasse 1, 91058 Erlangen, Germany.

  • Solare Brücke. (2022, September 20). Retrieved from Scheffler reflector: http://www.solare-bruecke.org/index.php/en/die-scheffler-reflektoren

  • Stein, H., & Buck, R. (2017). Advanced power cycles for concentrated solar power. Solar Energy, 152, 91–105. https://doi.org/10.1016/j.solener.2017.04.054

    Article  Google Scholar 

  • Stine, W., & Diver, R. (1994). A compendium of solar dish/stirling technology. Sandia National Laboratories.

    Google Scholar 

  • Tagle-Salazar, P., & Nigam, K. R.-S. (2020). Parabolic trough solar collectors: A general overview of technology, industrial applications,energy market, modeling, and standards (D. Gruyter, Ed.) Green Processing and Synthesis, 9, 595–649. https://doi.org/10.1515/gps-2020-0059

  • Tanaka, K. (2010). Concept design of solar thermal receiver using alkali metal thermal to electric converter (AMTEC). Current Applied Physics, 10, S254–S256. https://doi.org/10.1016/j.cap.2009.07.031

  • Téllez, F., Villasante, C., & Burisch, M. (2014). State of the art in heliostats and definition of specifications-survey for a low cost heliostat development. Deliverable 12.1, EU Project STAGE STE.

    Google Scholar 

  • Tsekouras, P., Tzivanidis, C., & Antonopoulos, K. (2018). Optical and thermal investigation of a linear Fresnel collector with trapezoidal cavity receiver. Applied Thermal Engineering, 135, 379–388. https://doi.org/10.1016/j.applthermaleng.2018.02.082

    Article  Google Scholar 

  • United Sun Systems International Ltd. (2012, December 31). Maricopa dish-stirling plant. Retrieved March 29, 2023, from https://commons.wikimedia.org/wiki/File:Maricopa_Dish-Stirling_plant_01.jpg

  • van Rooyen, D. W., Heimsath, A., Nitz, P., & Platzer, W. (2011). An optical model of the fix-focus scheffler reflector. In Proceedings of 30th ISES Solar World Congress (pp. 4527–4537), Kassel, 28 August–2 September 2011. https://doi.org/10.18086/swc.2011.28.30

  • Viebahn, P., Kronshage, S., Trieb, F., & Lechon, Y. (2008). Final report on technical data, costs, and life cycle inventories of solar thermal power plants. Deliverable 12.2 Project 502687 NEEDS EU 6th Framework Programme.

    Google Scholar 

  • Vignarooban, K., Xu, X., Arvay, A., Hsu, K., & Kannan, A. (2015). Heat transfer fluids for concentrating solar power systems—A review. Applied Energy, 146, 383–396. https://doi.org/10.1016/j.apenergy.2015.01.125

    Article  Google Scholar 

  • Viswanathan, R. (1993). Damage mechanisms and life assessment of high-temperature components (2nd ed.). Metals Park, Ohio 44073. ASM International.

    Google Scholar 

  • Wang, K., Wu, H., Wang, D., Wang, Y., Tong, Z., Lin, F., & Olabi, A. (2015). Experimental study on a coiled tube solar receiver under variable solar radiation condition. Solar Energy, 122, 1080–1090. https://doi.org/10.1016/j.solener.2015.10.004

    Article  Google Scholar 

  • Wua, S.-Y., **ao, L., Cao, Y., & Li, Y. (2010). A parabolic dish/AMTEC solar thermal power system and its performance evaluation. Applied Energy, 87, 452–462. https://doi.org/10.1016/j.apenergy.2009.08.041

  • Yang, M., Zhu, Y., & Taylor, R. (2018). End losses minimization of linear Fresnel reflectors with a simple, two-axis mechanical tracking system. Energy Conversion and Management, 161, 284–293. https://doi.org/10.1016/j.enconman.2018.01.082

    Article  Google Scholar 

  • Yellowhair, J., & Ho, C. (2010). Heliostat canting and focusing methods: An overview and comparison. Energy Sustainability, 609–615. https://doi.org/10.1115/ES2010-90356

  • You, J. H., Visca, E., Barett, T., Böswirth, B., Creszensi, F., Dompatil, F., … Vorpahl, C. (2018). European divertor target concepts for DEMO: Design rationales and high heat flux performance. Nuclear Materials and Energy, 16, 1–11. https://doi.org/10.1016/j.nme.2018.05.012

  • Zarza Moya, E. (2020). Parabolic-trough concentrating solar power systems. In K. S. Lovegrove (Ed.), Concentrating solar power technology (2nd ed., p. 832). Woodhead Publishing. https://doi.org/10.1016/C2018-0-04978-6

  • Zhu, G. (2017). New adaptive method to optimize the secondary reflector of linear Fresnel collectors. Solar Energy, 144(1), 117–126. https://doi.org/10.1016/j.solener.2017.01.005

    Article  Google Scholar 

  • Zhu, Y., Shi, J., Li, Y., L., W., Huang, Q., & Xu, G. (2017). Design and thermal performances of a scalable linear Fresnel reflector solar system. Energy Conversion and Management, 146, 174–181. https://doi.org/10.1016/j.enconman.2017.05.031

  • Zou, B., Yang, H., Yao, Y., & Jiang, J. (2017). A detailed study on the effects of sunshape and incident angle on the optical performance of parabolic trough solar collectors. Applied Thermal Engineering, 126, 81–91. https://doi.org/10.1016/j.applthermaleng.2017.07.149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Stieglitz .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stieglitz, R., Platzer, W. (2024). Concentrating Collectors. In: Solar Thermal Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-43173-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43173-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43172-2

  • Online ISBN: 978-3-031-43173-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation