Implementation of Low-Power Full Adder Using GNRFET Technology

  • Conference paper
  • First Online:
Communication, Networks and Computing (CNC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1893))

Included in the following conference series:

  • 187 Accesses

Abstract

Adders are fundamental components of more complex arithmetic operations, including addition, multiplication, and division, as well as mathematical procedures. The vast majority of these types of systems, adder components is the most critical path that influences the speed of the system. To satisfy these requirements, the adder cell, which is the fundamental structural component, should have its power consumption and propagation delay reduced. Researchers have tried, and continue to try, to create adders that deliver either rapid speed, low power consumption, decreased space, or a combination of these properties. These technical breakthroughs have allowed them to design adders that give one of these benefits. During this research, a variety of digital adders that are functionally identical to Full Adders and GNRFETs manufactured using 32 nm technology were used to construct this area unit. The adder’s equivalent to average power performance parameters and delay is established after being simulated using HSPICE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhattacharyya, P., Kundu, B., Ghosh, S., Kumar, V., Dandapat, A.: Performance analysis of a low-power high-speed hybrid 1-bit full adder circuit. IEEE Trans. VLSI Syst. 23(10), 2001–2008 (2015). https://doi.org/10.1109/TVLSI.2014.2357057

    Article  Google Scholar 

  2. Juveria, P., Ragini, K.: Low power and high speed full adder utilising new XOR and XNOR gates. Int. J. Innov. Technol. Exploring Eng. 8(8), 1516–1519 (2019)

    Google Scholar 

  3. Subhashini, T., Kamaraju, M., Babulu, K.: Low-power and rapid adders using new XOR and XNOR gates. Int. J. Eng. Res. Technol. 12(12), 2072–2076 (2019)

    Google Scholar 

  4. SubbaRao, D., Santhosh, K., Pushpa Latha, M.: low-power and fast full adder by exploring new XOR and XNOR gates. J. Eng. Sci. 11(1), 364–370 (2020)

    Google Scholar 

  5. Rajesh, P., Srikanth, P.N., Vijaya Prasad, K.: Low-power and rapid full adder through exploration of new XOR and XNOR gates. Int. J. VLSI Des. Commun. Syst. 07 (2019)

    Google Scholar 

  6. loga Lakshmi, M., Jeya Anusuya, S., Sathyah, S.V.: Performance improvement of low power and fast full adder by exploring new XOR and XNOR gates. Int. J. Innov. Res. Sci. Eng. Technol. 8(2), 133–146 (2019)

    Google Scholar 

  7. Jadia, R., Josh, S.: Design of low power adder cell using XOR and XNOR gate. Int. J. Recent Technol. Eng. 9(1), 2560–2564 (2020)

    Google Scholar 

  8. Deebigai, R., Krishnakumar, P.: Low power design for fast full adder. Int. Res. J. Eng. Technol. 07(03), 2567–2572 (2020)

    Google Scholar 

  9. Tejaswini, M.L., Aishwarya, H., Akhila, M., Manasa, B.G.: High-speed hybrid-logic full adder utilizing high-performance 10-T XOR–XNOR cell. Int. J. Adv. Res. Sci. Commun. Technol. 8(1), 264–269 (2021)

    Google Scholar 

  10. Venkayya Naidu, M., Sravana Kumar, Y., Ramakrishna, A.: A 45 nm CMOS technology exploring a low-power and rapid 4-bit full adder with XOR and XNOR gates. Int. J. Sci. Eng. Dev. Res. 4(11), 156–165 (2019)

    Google Scholar 

  11. Shahbaz, M., Patle, D.: High-speed hybrid-logic full adder low power16-T XOR–XNOR cell. Int. J. Innov. Res. Technol. Manag. 4(5), 29–34 (2020)

    Google Scholar 

  12. Uma Maheswari, R.K., Marimuthu, C.N.: Implementation of a low-power, fast full adder using novel XOR and XNOR gates. Int. J. Intell. Adv. Res. Eng. Comput. 7(1) (2019)

    Google Scholar 

  13. Low Power and Fast Full Adder by Exploring New XOR and XNOR Gates

    Google Scholar 

  14. Dharani, B., Naresh Kumar, K., Vineela, M.: Design of XOR/XNOR circuits for Hybrid Full Adder. Int. J. Eng. Res. Electron. Comput. Eng. 7(5), 1–7 (2020)

    Google Scholar 

  15. Naga Gowtham, M., et al.: Performance analysis of a low power high speed hybrid full adder circuit and full subtractor circuit. Turkish J. Compu. Math. Educ. 12(3), 3037–3045 (2021). https://doi.org/10.17762/turcomat.v12i3.1338

    Article  Google Scholar 

  16. Mohan Krishna, S., Sai Lakshmi, M., Kumari, K.A., Sampath, P.V.S., Doddi, B.R.: Design and Implementation of a Low Power Delay 1-bit Xnor/Xor Adder

    Google Scholar 

  17. Parameshwara, M.C.: Robust and scaleable hybrid 1-bit full adder circuit for vlsi application. Int. Confederation Thermal Anal. Calorimetry 7(2), 1109–1114 (2021)

    Google Scholar 

  18. Santhosh, C.: Energy efficient arithmetic full adders using various technology nodes. Int. J. Emerg. Trends Eng. Res. 8(7), 3071–3075 (2020)

    Article  MathSciNet  Google Scholar 

  19. Devnath, B.C., Biswas, S.N.: low power full adder design using PTM transistor model. Carpathian J. Electron. Comput. Eng. 12(2), 15–20 (2019). https://doi.org/10.2478/cjece-2019-0011

    Article  Google Scholar 

  20. Arun Kumar, M., Yadhav, D.: Performance analysis of XOR and XNOR gates employing different logic styles. J. Emeg. Technol. Inov. Res. 8(8), 60–64 (2021)

    Google Scholar 

  21. Yadav, A., Jain, M.: Novel low power and high-speed CMOS-based XOR/XNORs utilising systematic cell design methodology. IEEE Trans. Electron. Dev. 5(3), 1018–1024 (2017)

    Google Scholar 

  22. Padma, S.I., Archana Devi, S., Jennifer, R., Pramma Sathya, V.: Reduction techniques for power and delay on full adder by XOR gate logics using microwind EDA tool. Int. J. Innov. Sci. Res. Technol. 6, 1094–1099 (2021)

    Google Scholar 

  23. Aladale, P.: Design of low power and high-speed full adder cell utilizing new 3TXNOR gate. Int. J. Comput. Sci. Mobile Computing 7(6), 31–36 (2018)

    Google Scholar 

  24. Krishnan, A., Balamurugan, V., Krishnakumar, A., Aparna, A., Ashna, A., Athira, M.: Design of low power high speed full adder circuits using XORXNOR topology. Int. Res. J. Eng. Technol. 7(5), 7662–7667 (2020)

    Google Scholar 

  25. Murugesan, A.: A theoretical description of graphene based transistors. Int. J. Innov. Sci. Eng. Technol. 1(3), 264–270 (2014)

    Google Scholar 

  26. Chen, Y-Y., et al.: A SPICE-compatible model of graphene nano-ribbon field-effect transistors enabling circuit-level delay and power analysis under process variation. In: 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay Sutradhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sutradhar, J., Akashe, S., Mishra, S. (2023). Implementation of Low-Power Full Adder Using GNRFET Technology. In: Tomar, R.S., et al. Communication, Networks and Computing. CNC 2022. Communications in Computer and Information Science, vol 1893. Springer, Cham. https://doi.org/10.1007/978-3-031-43140-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43140-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43139-5

  • Online ISBN: 978-3-031-43140-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation