Comparison of ROS Local Planners for a Holonomic Robot in Gazebo Simulator

  • Conference paper
  • First Online:
Interactive Collaborative Robotics (ICR 2023)

Abstract

A safe robot navigation in a dynamic environment is an essential part of an autonomous exploration path planning. A path planning part of a navigation involves global and local planners. While a global planner finds an optimal path with a prior knowledge of an environment and static obstacles, a local planner recalculates the path to avoid dynamic obstacles. The main goal of a local planning is adjusting an initial plan produced by a global planner in an online fashion. It is a crucial step to ensure a robot operation in dynamic environments because in real world scenarios an environment usually contains people and thus, a dynamic obstacles avoidance must respond quickly and recalculate an actual route. Holonomic robotic platforms are robotic vehicles that use omni-wheels to move in any direction, at any angle, without an additional rotation. These robotic platforms are ideal for working zones with a limited space access. This paper provides a comparison of ROS local planners that support omni-wheel mobile robots: Trajectory Rollout, DWA, EBand, and TEB. The algorithms were compared using a path length, a travelling time and a number of obstacle collisions. Gazebo simulator was used for modeling virtual scenes with dynamic obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koubaa, A., et al.: Introduction to mobile robot path planning. In: Robot Path Planning and Cooperation. SCI, vol. 772, pp. 3–12. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77042-0_1

    Chapter  Google Scholar 

  2. Gul, F., Rahiman, W., Nazli Alhady, S.S.: A comprehensive study for robot navigation techniques. Cogent Eng. 6(1), 1–25 (2019)

    Article  Google Scholar 

  3. Hai, N.D.X., Nam, L.H.T., Thinh, N.T.: Remote healthcare for the elderly, patients by tele-presence robot. In: 2019 International Conference on System Science and Engineering (ICSSE), pp. 506–510 (2019)

    Google Scholar 

  4. Murphy, R.R.: Humans and robots in off-normal applications and emergencies. In: Chen, J. (ed.) Advances in Human Factors in Robots and Unmanned Systems: Proceedings of the AHFE 2019 International Conference on Human Factors in Robots and Unmanned Systems, July 24–28, 2019, Washington D.C., USA, pp. 171–180. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-20467-9_16

    Chapter  Google Scholar 

  5. Taheri, H., Zhao, C.X.: Omnidirectional mobile robots, mechanisms and navigation approaches. Mech. Mach. Theor. 153, 103958 (2020)

    Article  Google Scholar 

  6. Safin, R., Lavrenov, R., Hsia, K.H., Maslak, E., Schiefermeier-Mach, N., Magid, E.: Modelling a turtlebot3 based delivery system for a smart hospital in gazebo. In: 2021 International Siberian Conference on Control and Communications (SIBCON), pp. 1–6 (2021)

    Google Scholar 

  7. Pimentel, F., Aquino, P.: Performance evaluation of ROS local trajectory planning algorithms to social navigation. In: 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE), pp. 156–161 (2019)

    Google Scholar 

  8. Vagale, A., Oucheikh, R., Bye, R.T., Osen, O.L., Fossen, T.I.: Path planning and collision avoidance for autonomous surface vehicles I: a review. J. Marine Sci. Technol. 26(4), 1292–1306 (2021). https://doi.org/10.1007/s00773-020-00787-6

    Article  Google Scholar 

  9. Cybulski, B., Wegierska, A., Granosik, G.: Accuracy comparison of navigation local planners on ROS-based mobile robot. In: 2019 12th International Workshop on Robot Motion and Control (RoMoCo), pp. 104–111 (2019)

    Google Scholar 

  10. Gerkey, B. P., Konolige, K.: Planning and control in unstructured terrain. In: ICRA Workshop on Path Planning on Costmaps (2008)

    Google Scholar 

  11. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)

    Article  Google Scholar 

  12. Gehrig, S.K., Stein, F.J.: Elastic bands to enhance vehicle following. In: 2001 IEEE Intelligent Transportation Systems, pp. 597–602 (2001)

    Google Scholar 

  13. Keller, M., Hoffmann, F., Hass, C., Bertram, T., Seewald, A.: Planning of optimal collision avoidance trajectories with timed elastic bands. IFAC Proc. Volum. 47(3), 9822–9827 (2014)

    Article  Google Scholar 

  14. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2149–2154 (2004)

    Google Scholar 

  15. Apurin, A., et al.: LIRS-ArtBul: design, modelling and construction of an omnidirectional chassis for a modular multipurpose robotic platform. In: Interactive Collaborative Robotics: 7th International Conference (ICR 2022), pp. 16–18 (2022)

    Google Scholar 

  16. Gschwandtner, M., Kwitt, R., Uhl, A., Pree, W.: BlenSor: blender sensor simulation toolbox. In: Bebis, G., et al. (eds.) Advances in Visual Computing: 7th International Symposium, ISVC 2011, Las Vegas, NV, USA, September 26-28, 2011. Proceedings, Part II, pp. 199–208. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24031-7_20

    Chapter  Google Scholar 

  17. Apurin, A., Abbyasov, B., Dobrokvashina, A., Bai, Y., Svinin, M., Magid, E.: Omniwheel chassis’ model and plugin for gazebo simulator. Proc. Int. Conf. Artif. Life Robot. 28, 170–173 (2023). https://doi.org/10.5954/ICAROB.2023.OS6-7

    Article  Google Scholar 

  18. Takaya, K., Asai, T., Kroumov, V., Smarandache, F.: Simulation environment for mobile robots testing using ROS and Gazebo. In: 2016 20th International Conference on System Theory, Control and Computing (ICSTCC), pp. 96–101 (2016)

    Google Scholar 

  19. Iskhakova, A., Abbyasov, B., Mironchuk, T., Tsoy, T., Svinin, M., Magid, E.: LIRS-MazeGen: an easy-to-use blender extension for modeling maze-like environments for gazebo simulator. In: Ronzhin, A., Pshikhopov, V. (eds.) Frontiers in Robotics and Electromechanics, pp. 147–161. Springer Nature Singapore, Singapore (2023). https://doi.org/10.1007/978-981-19-7685-8_10

    Chapter  Google Scholar 

  20. Valera, Á., Valero, F., Vallés, M., Besa, A., Mata, V., Llopis-Albert, C.: Navigation of autonomous light vehicles using an optimal trajectory planning algorithm. Sustainability 13(3), 1233 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by the Russian Science Foundation (RSF) and the Cabinet of Ministers of the Republic of Tatarstan according to the research project No. 22-21-20033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem Apurin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Apurin, A., Abbyasov, B., Martínez-García, E.A., Magid, E. (2023). Comparison of ROS Local Planners for a Holonomic Robot in Gazebo Simulator. In: Ronzhin, A., Sadigov, A., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2023. Lecture Notes in Computer Science(), vol 14214. Springer, Cham. https://doi.org/10.1007/978-3-031-43111-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43111-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43110-4

  • Online ISBN: 978-3-031-43111-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation