Bayesian N-Mixture Models Applied to Estimating Insect Abundance

  • Chapter
  • First Online:
Modelling Insect Populations in Agricultural Landscapes

Part of the book series: Entomology in Focus ((ENFO,volume 8))

  • 90 Accesses

Abstract

Estimating animal abundance is an area of interest for many conservationists and population ecologists. When using count data to obtain abundance estimates, issues of imperfect detection must be taken into account. The N-mixture model proposed by Royle (Biometrics, 60(1), 108–115, 2004) provides a solution to this issue by incorporating detection probability in the estimate of abundance. We examine the original N-mixture model and assess its uses, advantages and assumptions. We then examine extensions to this vanilla N-mixture model which allow for the estimation of abundance using a range of data unsupported by the original model, including data that contain observations of multiple animals, data that contain large numbers of zero-counts and data that are collected over long periods of time. We finish by illustrating the applicability of both the original N-mixture model and a model proposed for multiple species collected over several years (Mimnagh et al., Environmental and Ecological Statistics, 1–24, 2022) by estimating foraging populations for bee species from data collected in 2016 and 2019 as part of the BeeWalk Survey in the UK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, Articles, 76(1), 1–32. ISSN 1548-7660. https://doi.org/10.18637/jss.v076.i01. https://www.jstatsoft.org/v076/i01.

  • Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology, 215–244.

    Google Scholar 

  • Comont, R., Luker, S., & Dickinson, H. (2021). Beewalk annual report 2021. Bumblebee Conservation Trust, Stirling, Scotland, UK.

    Google Scholar 

  • Dail, D., & Madsen, L. (2011). Models for estimating abundance from repeated counts of an open metapopulation. Biometrics, 67(2), 577–587.

    Article  Google Scholar 

  • Dennis, E. B., Morgan, B. J. T., & Ridout, M. S. (2015). Computational aspects of n-mixture models. Biometrics, 71(1), 237–246.

    Article  PubMed  Google Scholar 

  • Fiske, I., & Chandler, R. (2011). Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software, 43, 1–23.

    Article  Google Scholar 

  • Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472.

    Article  Google Scholar 

  • Golding, J. D., Joshua Nowak, J., & Dreitz, V. J. (2017). A multispecies dependent double-observer model: a new method for estimating multispecies abundance. Ecology and Evolution, 7(10), 3425–3435.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez, J. P., Robinson, S. K., Blackburn, J. K., & Ponciano, J. M. (2018). An efficient extension of n-mixture models for multi-species abundance estimation. Methods in Ecology and Evolution, 9(2), 340–353.

    Article  PubMed  Google Scholar 

  • Greenleaf, S. S., Williams, N. M., Winfree, R., & Kremen, C. (2007). Bee foraging ranges and their relationship to body size. Oecologia, 153(3), 589–596.

    Article  PubMed  Google Scholar 

  • Haines, L. M. (2016). Maximum likelihood estimation for n-mixture models. Biometrics, 72(4), 1235–1245.

    Article  PubMed  Google Scholar 

  • Hostetler, J. A., & Chandler, R. B. (2015). Improved state-space models for inference about spatial and temporal variation in abundance from count data. Ecology, 96(6), 1713–1723.

    Article  Google Scholar 

  • Jenkins, M., Green, R. E., & Madden, J. (2003). The challenge of measuring global change in wild nature: are things getting better or worse? Conservation Biology, 17(1), 20–23.

    Article  Google Scholar 

  • Joseph, L. N., Elkin, C., Martin, T. G., & Possingham, H. P. (2009). Modeling abundance using n-mixture models: the importance of considering ecological mechanisms. Ecological Applications, 19(3), 631–642.

    Article  PubMed  Google Scholar 

  • Kéry, M., Dorazio, R. M., Soldaat, L., Van Strien, A., Zuiderwijk, A., & Andrew Royle, J. (2009). Trend estimation in populations with imperfect detection. Journal of Applied Ecology, 46(6), 1163–1172.

    Article  Google Scholar 

  • Krebs, C. J. (1972). The experimental analysis of distribution and abundance. Ecology. New York: Harper and Row.

    Google Scholar 

  • Kuhlman, M. P., Burrows, S., Mummey, D. L., Ramsey, P. W., & Hahn, P. G. (2021). Relative bee abundance varies by collection method and flowering richness: Implications for understanding patterns in bee community data. Ecological Solutions and Evidence, 2(2), e12071.

    Article  Google Scholar 

  • Leonhardt, S. D., Gallai, N., Garibaldi, L. A., Kuhlmann, M., & Klein, A.-M. (2013). Economic gain, stability of pollination and bee diversity decrease from Southern to Northern Europe. Basic and Applied Ecology, 14(6), 461–471.

    Article  Google Scholar 

  • Martin, J., Andrew Royle, J., Mackenzie, D. I., Edwards, H. H., Kery, M., & Gardner, B. (2011). Accounting for non-independent detection when estimating abundance of organisms with a bayesian approach. Methods in Ecology and Evolution, 2(6), 595–601.

    Article  Google Scholar 

  • McGrady, C. M., Strange, J. P., López-Uribe, M. M., & Fleischer, S. J. (2021). Wild bumble bee colony abundance, scaled by field size, predicts pollination services. Ecosphere, 12(9), e03735.

    Article  Google Scholar 

  • Mimnagh, N., Parnell, A., Prado, E., & Moral, R. A. (2022). Bayesian multi-species n-mixture models for unmarked animal communities. Environmental and Ecological Statistics, 1–24.

    Google Scholar 

  • Moral, R. A., Hinde, J., Clarice, G., Demétrio, B., Reigada, C., & Godoy, W. A. C. (2018). Models for jointly estimating abundances of two unmarked site-associated species subject to imperfect detection. Journal of Agricultural, Biological and Environmental Statistics, 23(1), 20–38.

    Article  Google Scholar 

  • Nichols, J. D., Hines, J. E., Lebreton, J.-D., & Pradel, R. (2000). Estimation of contributions to population growth: a reverse-time capture–recapture approach. Ecology, 81(12), 3362–3376.

    Google Scholar 

  • Norris, K. (2004). Managing threatened species: the ecological toolbox, evolutionary theory and declining-population paradigm. Journal of Applied Ecology, 41(3), 413–426.

    Article  Google Scholar 

  • Pettis, J. S., & Delaplane, K. S. (2010). Coordinated responses to honey bee decline in the USA. Apidologie, 41(3), 256–263.

    Article  Google Scholar 

  • Plummer, M. (2003). Jags: A program for analysis of bayesian graphical models using gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing (vol. 124), Vienna, Austria.

    Google Scholar 

  • Plummer, M. (2017). JAGS Version 4.3.0 user manual. http://www.stat.yale.edu/~jtc5/238/materials/jags_4.3.0_manual_with_distributions.pdf.

    Google Scholar 

  • R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Royle, J. A. (2004). N-mixture models for estimating population size from spatially replicated counts. Biometrics, 60(1), 108–115.

    Article  PubMed  Google Scholar 

  • Russo, L., Park, M., Gibbs, J., & Danforth, B. (2015). The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards. Ecology and Evolution, 5(17), 3531–3540.

    Article  PubMed  PubMed Central  Google Scholar 

  • Self, S. G., & Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82(398), 605–610.

    Article  Google Scholar 

  • Su, Y.-S., & Yajima, M. (2020). R2jags: Using R to Run ‘JAGS’. https://CRAN.R-project.org/package=R2jags. R package version 0.6-1.

  • Theisen-Jones, H., & Bienefeld, K. (2016). The asian honey bee (apis cerana) is significantly in decline. Bee World, 93(4), 90–97.

    Article  Google Scholar 

  • Wenger, S. J., & Freeman, M. C. (2008). Estimating species occurrence, abundance, and detection probability using zero-inflated distributions. Ecology, 89(10), 2953–2959.

    Article  PubMed  Google Scholar 

  • Williams, B. K., Nichols, J. D., & Conroy, M. J. (2002). Analysis and management of animal populations. Academic Press.

    Google Scholar 

  • Zattara, E. E., & Aizen, M. A. (2021). Worldwide occurrence records suggest a global decline in bee species richness. One Earth, 4(1), 114–123.

    Article  Google Scholar 

Download references

Acknowledgements

Niamh Mimnagh’s work was supported by a Science Foundation Ireland grant number 18/CRT/6049. The opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Science Foundation Ireland. Andrew Parnell’s work was also supported by an investigator award (16/IA/4520), a Marine Research Programme funded by the Irish Government, co-financed by the European Regional Development Fund (Grant-Aid Agreement No. PBA/CC/18/01), European Union’s Horizon 2020 research and innovation programme (grant agreement No. 818144), SFI Centre for Research Training 18CRT/6049 and SFI Research Centre award 16/RC/3872.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niamh Mimnagh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mimnagh, N., Parnell, A., Prado, E. (2023). Bayesian N-Mixture Models Applied to Estimating Insect Abundance. In: A. Moral, R., Godoy, W.A. (eds) Modelling Insect Populations in Agricultural Landscapes. Entomology in Focus, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-031-43098-5_10

Download citation

Publish with us

Policies and ethics

Navigation