SpikeBALL: Neuromorphic Dataset for Object Tracking

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2023)

Abstract

Most of widely used datasets are not suitable for Spiking Neural Networks (SNNs) due to the need to encode the static data into spike trains and then put them into the network. In addition, the majority of these datasets have been generated to classify objects and can not be used to solve object tracking problems. Therefore, we propose a new neuromorphic dataset, SpikeBALL, for object tracking that contributes to improve the development of the SNN algorithm for these type of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hirschberg, J., Manning, C.D.: Advances in natural language processing. Science 349, 261–266 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. Noda, K., Yamaguchi, Y., Nakadai, K., Okuno, H.G., Ogata, T.: Audio-visual speech recognition using deep learning. Appl. Intell. 42, 722–737 (2015)

    Article  Google Scholar 

  3. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  4. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10, 1659–1671 (1997)

    Article  Google Scholar 

  5. Shen, G., Zhao, D., Zeng, Y.: Backpropagation with biologically plausible spatiotemporal adjustment for training deep spiking neural networks. Patterns 100522 (2022)

    Google Scholar 

  6. Barga, D., Thounaojam, D.M.: A survey on moving object tracking in video. Int. J. Inf. Theory 3, 31–46 (2014)

    Google Scholar 

  7. Zhang, Z., Liu, Y., Wang, X., Li, B., Hu, W.: Learn to match: automatic matching network design for visual tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (IEEE), pp. 13339–1334 (2021)

    Google Scholar 

  8. Inivation. Understanding the performance of neuromorphic event-based vision sensors (2020). https://inivation.com/dvp/white-papers/

  9. Deng, J., et al.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (IEEE), pp. 248–255 (2009)

    Google Scholar 

  10. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  11. Zhang, T., et al.: Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks. Sci. Adv. 7, eabh0146 (2021)

    Google Scholar 

  12. Orchard, G., Jayawant, A., Cohen, G.K., Thakor, N.: Converting static image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9, 437 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li, H., Liu, H., Ji, X., Li, G., Shi, L.: CIFAR10-DVS: an event-stream dataset for object classification. Front. Neurosci. 11, 309 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Amir, A., et al.: A low power, fully event-based gesture recognition system. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE), pp. 7243–7252 (2017)

    Google Scholar 

  15. Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.: HATS: histograms of averaged time surfaces for robust event-based object classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1731–1740 (2018)

    Google Scholar 

  16. Inivation Hompage. https://inivation.com. Accessed 20 Mar 2023

  17. Yongqiang, C., Yang, C., Deepak, K.: Spiking deep convolutional neural networks for energy-efficient object recognition. Int. J. Comput. Vision 113, 54–66 (2015)

    Article  Google Scholar 

  18. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ar**v preprint ar**v:1409.1556 (2014)

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  21. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  22. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  23. Merolla, P.A., et al.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. Sengupta, A., Ye, Y., Wang, R., Liu, Y.: Going deeper in spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Fernando M. Quintana would like to acknowledge the Spanish Ministerio de Ciencia, Innovación y Universidades for the support through FPU grant (FPU18/04321). This work was also supported by the project NEMOVISION from the Ministerio de Ciencia e Innovación, PID2019-109465RB-I00/AEI/10.13039/501100011033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria P. Guerrero-Lebrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerrero-Lebrero, M.P., Quintana, F.M., Guerrero, E. (2023). SpikeBALL: Neuromorphic Dataset for Object Tracking. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135. Springer, Cham. https://doi.org/10.1007/978-3-031-43078-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43078-7_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43077-0

  • Online ISBN: 978-3-031-43078-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation