Advances in Colloidal Synthesis of “Giant” Core/Thick-Shell Quantum Dots

  • Chapter
  • First Online:
Advances in Fabrication and Investigation of Nanomaterials for Industrial Applications

Abstract

Core/shell quantum dots (QDs) have been widely studied for their size- and composition-dependent properties and versatility for use in photonic, photovoltaic, optoelectronic, and biomedical device applications. Core/thick-shell “giant” QDs are of particular recent interest due to their advantageous optical properties such as suppression of blinking, photobleaching, and Auger recombination. Synthesizing high-quality nanostructures presents a distinct challenge for giant core/thick-shell QDs due to additional factors that complicate the nanocrystal growth mechanism. Reaction parameters must be carefully chosen to generate the structural morphology and composition for the desired core/thick-shell band structure while minimizing the formation of crystalline defects that reduce optical performance. These ideal conditions must balance competing reaction processes to grow a uniform shell while suppressing homogeneous nucleation of the large amounts of shelling material and minimizing ripening of the giant particles. This chapter presents current progress in the colloidal synthesis of “giant” core/thick-shell QDs. We first review the development of successive ionic layer adsorption and reaction (SILAR) techniques to synthesize core/thick-shell CdSe/CdS, CdSe/ZnSe, PbSe/CdSe, and PbS/CdS. The development of hot injection methods for thick-shell growth is then discussed with a particular focus on systematic studies of reaction variables for core/thick-shell CdTe/CdS. Finally, the shelling reaction mechanism is examined and we consider general experimental design criteria for the synthesis of high-quality thick-shelled QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the 4.5:1 OA:Cd case reported in Fig. 3 is an identical reaction to that reported for 3.8 nmol/mL in Fig. 2.

  2. 2.

    We of course do not test every possible value of [NP]. The lower error bars represent the range of possible values within which the [NP] threshold could lie.

References

  1. F. Pelayo García de Arquer, Dmitri V. Talapin, Victor I. Klimov, Yasuhiko Arakawa, Manfred Bayer, and Edward H. Sargent. Semiconductor quantum dots: Technological progress and future challenges. Science, 373(6555):eaaz8541, 8 2021.

    Google Scholar 

  2. C B Murray, D J Norris, and M G Bawendi. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc, 115:8706–8715, 1993.

    Article  CAS  Google Scholar 

  3. Jaehyun Kim, Seungho Song, Yong-Hoon Kim, and Sung Kyu Park. Recent Progress of Quantum Dot-Based Photonic Devices and Systems: A Comprehensive Review of Materials, Devices, and Applications. Small Structures, 2(3):2000024, 2021.

    Google Scholar 

  4. Donghao Wang, Feifei Yin, Zhonglin Du, Dongni Han, and Jianguo Tang. Recent progress in quantum dot-sensitized solar cells employing metal chalcogenides. J. Mater. Chem. A, 7:26205, 2019.

    Article  CAS  Google Scholar 

  5. AHmed A.H. Abdellatif, Hesham M. Tawfeek, Mahmoud A. Younis, Mansour Alsharidah, and Osamah Al Rugaie. Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential. International Journal of Nanomedicine, 17:1951–1970, 2022.

    Article  Google Scholar 

  6. Anupam Sahu and Dharmendra Kumar. Core-shell quantum dots: A review on classification, materials, application, and theoretical modeling. Journal of Alloys and Compounds, 924:166508, 11 2022.

    Google Scholar 

  7. Fabiola Navarro-Pardo, Haiguang Zhao, Zhiming M. Wang, and Federico Rosei. Structure/Property Relations in “Giant” Semiconductor Nanocrystals: Opportunities in Photonics and Electronics. Accounts of Chemical Research, 51(3):609–618, 12 2017.

    Google Scholar 

  8. Yongfen Chen, Javier Vela, Han Htoon, Joanna L Casson, Donald J Werder, David A Bussian, Victor I Klimov, and Jennifer A Hollingsworth. “Giant” Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking. J. Am. Chem. Soc, 130:38, 2008.

    Google Scholar 

  9. Yagnaseni Ghosh, Benjamin D. Mangum, Joanna L. Casson, Darrick J. Williams, Han Htoon, and Jennifer A. Hollingsworth. New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots. Journal of the American Chemical Society, 134(23):9634–9643, 2012.

    Article  CAS  PubMed  Google Scholar 

  10. Haiguang Zhao, Jiabin Liu, François Vidal, Alberto Vomiero, and Federico Rosei. Tailoring the interfacial structure of colloidal “giant” quantum dots for optoelectronic applications. Nanoscale, 10:17189, 2018.

    Article  CAS  PubMed  Google Scholar 

  11. Krishna P. Acharya, Hue M. Nguyen, Melissa Paulite, Andrei Piryatinski, Jun Zhang, Joanna L. Casson, Hongwu Xu, Han Htoon, and Jennifer A. Hollingsworth. Elucidation of two giants: Challenges to thick-shell synthesis in CdSe/ZnSe and ZnSe/CdS Core/shell quantum dots. Journal of the American Chemical Society, 137(11):3755–3758, 3 2015.

    Google Scholar 

  12. Christina J. Hanson, Nicolai F. Hartmann, Ajay Singh, Xuedan Ma, William J.I. Debenedetti, Joanna L. Casson, John K. Grey, Yves J. Chabal, Anton V. Malko, Milan Sykora, Andrei Piryatinski, Han Htoon, and Jennifer A. Hollingsworth. Giant PbSe/CdSe/CdSe Quantum Dots: Crystal-Structure-Defined Ultrastable Near-Infrared Photoluminescence from Single Nanocrystals. Journal of the American Chemical Society, 139(32):11081–11088, 8 2017.

    Google Scholar 

  13. Huidong Zang, Hongbo Li, Nikolay S Makarov, Kirill A Velizhanin, Kaifeng Wu, Young-Shin Park, and Victor I Klimov. Thick-Shell CuInS 2 /ZnS Quantum Dots with Suppressed “Blinking” and Narrow Single-Particle Emission Line Widths. Nano Lett, 17:1787–1795, 2017.

    Google Scholar 

  14. Sachidananda Krishnamurthy, Ajay Singh, Zhongjian Hu, Anastasia V. Blake, Younghee Kim, Amita Singh, Ekaterina A. Dolgopolova, Darrick J. Williams, Andrei Piryatinski, Anton V. Malko, Han Htoon, Milan Sykora, and Jennifer A. Hollingsworth. PbS/CdS Quantum Dot Room-Temperature Single-Emitter Spectroscopy Reaches the Telecom O and S Bands via an Engineered Stability. ACS Nano, 15(1):575–587, 1 2021.

    Google Scholar 

  15. Allison M Dennis, Matthew R Buck, Feng Wang, Nicolai F Hartmann, Somak Majumder, Joanna L Casson, John D Watt, Stephen K Doorn, Han Htoon, Milan Sykora, Jennifer A Hollingsworth, A M Dennis, M R Buck, F Wang, N F Hartmann, S Majumder, J L Casson, J D Watt, S K Doorn, H Htoon, J A Hollingsworth, and M Sykora. Role of Interface Chemistry in Opening New Radiative Pathways in InP/CdSe Giant Quantum Dots with Blinking-Suppressed Two-Color Emission. Advanced Functional Materials, 29(37):1809111, 9 2019.

    Google Scholar 

  16. Tory A Welsch, Jill M Cleveland, D Bruce Chase, and Matthew F Doty. Separating the Effects of Nonorthogonal Variables on the Hot-Injection Synthesis of Core/Thick-Shell (“Giant”) CdTe/CdS Quantum Dots. Chem. Mater., 34(23):10721–10731, 2022.

    Google Scholar 

  17. Christopher C Milleville, Eric Y Chen, Kyle R Lennon, Jill M Cleveland, Abinash Kumar, **g Zhang, James A Bork, Ansel Tessier, James M Lebeau, D Bruce Chase, Joshua M O Zide, and Matthew F Doty. Engineering Efficient Photon Upconversion in Semiconductor Heterostructures. ACS Nano, 13(1):489–497, 2019.

    Google Scholar 

  18. Diane G. Sellers and Matthew F. Doty. Design, synthesis and photophysical properties of InP/CdS/CdSe and CdTe/CdS/CdSe (core/shell/shell) quantum dots for photon upconversion. 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015, pages 1–5, 2015.

    Google Scholar 

  19. Andrei Piryatinski, Sergei A Ivanov, Sergei Tretiak, and Victor I Klimov. Effect of Quantum and Dielectric Confinement on the ExcitonExciton Interaction Energy in Type II Core/Shell Semiconductor Nanocrystals. Nano Lett., 7(1):108–115, 2007.

    Google Scholar 

  20. Sergio Brovelli, Wan Ki Bae, Christophe Galland, Umberto Giovanella, Francesco Meinardi, and Victor I Klimov. Dual-Color Electroluminescence from Dot-in-Bulk Nanocrystals. ACS Nano Letters, 14:486–494, 2014.

    Google Scholar 

  21. Valerio Pinchetti, Elena V. Shornikova, Gang Qiang, Wan Ki Bae, Francesco Meinardi, Scott A. Crooker, Dmitri R. Yakovlev, Manfred Bayer, Victor I. Klimov, and Sergio Brovelli. Dual-emitting dot-in-bulk CdSe/CdS nanocrystals with highly emissive core-and shell-based Trions sharing the same resident electron. Nano Letters, 19:8846–8854, 2019.

    Google Scholar 

  22. Zvicka Deutsch, Lior Neeman, and Dan Oron. Luminescence upconversion in colloidal double quantum dots. Nature Nanotechnology, 8(9):649–653, 9 2013.

    Google Scholar 

  23. Ayelet Teitelboim and Dan Oron. Broadband Near-Infrared to Visible Upconversion in Quantum DotQuantum Well Heterostructures. ACS Nano, 10:446–452, 2015.

    Article  PubMed  Google Scholar 

  24. Gaoling Yang, Miri Kazes, Dekel Raanan, and Dan Oron. Bright Near-Infrared to Visible Upconversion Double Quantum Dots Based on a Type-II/Type-I Heterostructure. ACS Photonics, 8:1909–1916, 2021.

    Article  CAS  Google Scholar 

  25. Jennifer A. Hollingsworth and Victor I. Klimov. “Soft” Chemical Synthesis and Manipulation of Semiconductor Nanocrystals. In Nanocrystal Quantum Dots, pages 1–57. 2010.

    Google Scholar 

  26. Leslie S. Hamachi, Haoran Yang, Ilan Jen-La Plante, Natalie Saenz, Kevin Qian, Michael P. Campos, Gregory T. Cleveland, Iva Rreza, Aisha Oza, Willem Walravens, Emory M. Chan, Zeger Hens, Andrew C. Crowther, and Jonathan S. Owen. Precursor reaction kinetics control compositional grading and size of CdSe1-: XSx nanocrystal heterostructures. Chemical Science, 10(26):6539–6552, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Haoran Yang, Leslie S. Hamachi, Iva Rreza, Wesley Wang, and Emory M. Chan. Design Rules for One-Step Seeded Growth of Nanocrystals: Threading the Needle between Secondary Nucleation and Ripening. Chemistry of Materials, 31:17, 2019.

    Article  Google Scholar 

  28. Joonhyuck Park, Arun Jayaraman, Alex W. Schrader, Gyu Weon Hwang, and Hee Sun Han. Controllable modulation of precursor reactivity using chemical additives for systematic synthesis of high-quality quantum dots. Nature Communications, 11(1):1–9, 11 2020.

    Google Scholar 

  29. P Tim Prins, Federico Montanarella, Kim Du, Yolanda Justo, Johanna C Van Der Bok, Stijn O M Hinterding, Jaco J Geuchies, Jorick Maes, Kim De Nolf, Sander Deelen, Hans Meijer, Thomas Zinn, Andrei V Petukhov, Freddy T Rabouw, Celso De, Mello Donega, Daniel Vanmaekelbergh, and Zeger Hens. Extended Nucleation and Superfocusing in Colloidal Semiconductor Nanocrystal Synthesis. ACS Nano Letters, 21:2487–2496, 2021.

    Google Scholar 

  30. Ellie Bennett, Matthew W Greenberg, Abraham J Jordan, Leslie S Hamachi, Soham Banerjee, Simon J L Billinge, and Jonathan S Owen. Size Dependent Optical Properties and Structure of ZnS Nanocrystals Prepared from a Library of Thioureas. Chem. Mater, 34:706–717, 2022.

    Google Scholar 

  31. Craig R. Bullen and Paul Mulvaney. Nucleation and growth kinetics of CdSe nanocrystals in octadecene. NANO LETTERS, 4(12):2303–2307, 12 2004.

    Google Scholar 

  32. Sofie Abe, Richard Karel Capek, Bram De Geyter, and Zeger Hens. Tuning the Postfocused Size of Colloidal Nanocrystals by the Reaction Rate: From Theory to Application. ACS Nano, 6(1):42–53, 2012.

    Google Scholar 

  33. Emanuele A. Slejko and Vanni Lughi. Size Control at Maximum Yield and Growth Kinetics of Colloidal II-VI Semiconductor Nanocrystals. Journal of Physical Chemistry C, 123(2):1421–1428, 2019.

    Article  CAS  Google Scholar 

  34. Jennifer M. Lee, Rebecca C. Miller, Lily J. Moloney, and Amy L. Prieto. The development of strategies for nanoparticle synthesis: Considerations for deepening understanding of inherently complex systems. Journal of Solid State Chemistry, 273:243–286, 5 2019.

    Google Scholar 

  35. Yuan Niu, Chaodan Pu, Runchen Lai, Renyang Meng, Wanzhen Lin, Haiyan Qin, and **aogang Peng. One-pot/three-step synthesis of zinc-blende CdSe/CdS core/shell nanocrystals with thick shells. Nano Research, 10(4):1149–1162, 2017.

    Article  CAS  Google Scholar 

  36. J Jack Li, Y Andrew Wang, Wenzhuo Guo, Joel C Keay, Tetsuya D Mishima, Matthew B Johnson, and **aogang Peng. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction. J. Am. Chem. Soc, 125:12567–12575, 2003.

    Google Scholar 

  37. Guiju Liu, Zhibin Ling, Yiqian Wang, and Haiguang Zhao. Near-infrared CdSexTe1-x@CdS “giant” quantum dots for efficient photoelectrochemical hydrogen generation. International Journal of Hydrogen Energy, 43(49):22064–22074, 12 2018.

    Google Scholar 

  38. James R Mcbride, Nimai Mishra, and Sophia M Click. Role of shell composition and morphology in achieving single-emitter photostability for green-emitting “giant” quantum dots. J. Chem. Phys, 152:124713, 2020.

    Google Scholar 

  39. Emile Drijvers, Jonathan De Roo, Pieter Geiregat, Krisztina Feher Feher, Zeger Hens, and Tangi Aubert. Revisited Wurtzite CdSe Synthesis: A Gateway for the Versatile Flash Synthesis of Multishell Quantum Dots and Rods. Chemistry of Materials, 28:7311–7323, 2016.

    Google Scholar 

  40. Curtis B. Williamson, Douglas R. Nevers, Tobias Hanrath, and Richard D. Robinson. Prodigious Effects of Concentration Intensification on Nanoparticle Synthesis: A High-Quality, Scalable Approach. Journal of the American Chemical Society, 137(50):15843–15851, 2015.

    Article  CAS  PubMed  Google Scholar 

  41. Adam Roberge, John H Dunlap, Fiaz Ahmed, and Andrew B Greytak. Size-Dependent PbS Quantum Dot Surface Chemistry Investigated via Gel Permeation Chromatography. Chem. Mater., 32:6588–6594, 2020.

    Google Scholar 

  42. Igor Nakonechnyi, Michael Sluydts, Yolanda Justo, Jacek Jasieniak, and Zeger Hens. Mechanistic Insights in Seeded Growth Synthesis of Colloidal Core/Shell Quantum Dots. Chemistry of Materials, 29(11):4719–4727, 6 2017.

    Google Scholar 

  43. Yanyan Jia, **quan Chen, Kaifeng Wu, Alex Kaledin, Djamaladdin G. Musaev, Zhaoxiong **e, and Tianquan Lian. Enhancing photo-reduction quantum efficiency using quasi-type II core/shell quantum dots. Chemical Science, 7(7):4125–4133, 6 2016.

    Google Scholar 

  44. Jonathan De Roo. Chemical Considerations for Colloidal Nanocrystal Synthesis. Chem. Mater, 34:5766–5779, 2022.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tory A. Welsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Welsch, T.A., Cleveland, J.M., Chase, D.B., Doty, M.F. (2024). Advances in Colloidal Synthesis of “Giant” Core/Thick-Shell Quantum Dots. In: Krishnamoorthy, S., Iniewski, K.(. (eds) Advances in Fabrication and Investigation of Nanomaterials for Industrial Applications . Springer, Cham. https://doi.org/10.1007/978-3-031-42700-8_2

Download citation

Publish with us

Policies and ethics

Navigation