Condition for Periodic Attractor in 4-Dimensional Repressilators

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2023)

Abstract

One of the key questions about gene regulatory networks is how to predict complex dynamical properties based on the influence graph’s topology. Earlier theoretical studies have identified conditions for complex dynamical properties, like multistability or oscillations, based on topological features, like the presence of a positive (negative) feedback loop. This work follows this path and aims to find a sufficient and necessary condition for the existence of a periodic attractor in 4-dimensional (4 genes) repressilators based on a discrete modeling framework under some dynamical assumptions. These networks are extensions of the widely studied 3-dimensional repressilator, which has been used in synthetic biology to produce synthetic oscillations. While other researchers have explored specific extensions of the 3-dimensional repressilator to improve synthetic oscillation control, our work investigates all 4-dimensional networks with only inhibitions. By uncovering new insights about periodic attractors in these small networks, our findings could aid the design of new synthetic oscillations. We search for condition for period attractor in an exhaustive manner with the guide of a decision tree model. Our major contributions include: 1) discovering that, with one exception, the relations between gene regulation thresholds do not impact the existence of periodic attractors in any of the influence graphs considered in this study; 2) identifying a sufficient and necessary condition of simple form for the existence of a periodic attractor when the exception is ignored; 3) identifying new topological features of influence graphs that are necessary for predicting the existence of periodic attractor in 4-dimensional repressilators.

Supported by China Scholarship Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abou-Jaoudé, W., Ouattara, D.A., Kaufman, M.: From structure to dynamics: frequency tuning in the p53-mdm2 network: I. logical approach. J. Theor. Biol. 258(4), 561–577 (2009)

    Article  PubMed  Google Scholar 

  2. Akutsu, T., Kosub, S., Melkman, A.A., Tamura, T.: Finding a periodic attractor of a boolean network. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(5), 1410–1421 (2012)

    Article  Google Scholar 

  3. Almeida, S., Chaves, M., Delaunay, F.: Control of synchronization ratios in clock/cell cycle coupling by growth factors and glucocorticoids. Royal Soc. Open Sci. 7(2), 192054 (2020)

    Article  CAS  Google Scholar 

  4. Barik, D., Baumann, W.T., Paul, M.R., Novak, B., Tyson, J.J.: A model of yeast cell-cycle regulation based on multisite phosphorylation. Molec. Syst. Biol. 6(1), 405 (2010)

    Article  Google Scholar 

  5. Behaegel, J., Comet, J.P., Bernot, G., Cornillon, E., Delaunay, F.: A hybrid model of cell cycle in mammals. J. Bioinf. Comput. Biol. 14(01), 1640001 (2016)

    Article  Google Scholar 

  6. Bernot, G., Comet, J.P., Khalis, Z.: Gene regulatory networks with multiplexes. In: European Simulation and Modelling Conference Proceedings, pp. 423–432 (2008)

    Google Scholar 

  7. Boyenval, D., Bernot, G., Collavizza, H., Comet, J.-P.: What is a cell cycle checkpoint? the TotemBioNet answer. In: Abate, A., Petrov, T., Wolf, V. (eds.) CMSB 2020. LNCS, vol. 12314, pp. 362–372. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60327-4_21

    Chapter  Google Scholar 

  8. Buşe, O., Pérez, R., Kuznetsov, A.: Dynamical properties of the repressilator model. Phys. Rev. E 81(6), 066206 (2010)

    Article  Google Scholar 

  9. Comet, J.-P., Fromentin, J., Bernot, G., Roux, O.: A formal model for gene regulatory networks with time delays. In: Chan, J.H., Ong, Y.-S., Cho, S.-B. (eds.) CSBio 2010. CCIS, vol. 115, pp. 1–13. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16750-8_1

    Chapter  Google Scholar 

  10. Cornillon, E., Comet, J.P., Bernot, G., Enée, G.: Hybrid gene networks: a new framework and a software environment. Adv. Syst. Synth. Biol. (2016)

    Google Scholar 

  11. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. Goh, K.I., Kahng, B., Cho, K.H.: Sustained oscillations in extended genetic oscillatory systems. Biophys. J. 94(11), 4270–4276 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. Nat. Rev. Molec. Cell Biol. 9(10), 770–780 (2008)

    Article  CAS  Google Scholar 

  14. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  CAS  PubMed  Google Scholar 

  15. Khalis, Z., Comet, J.P., Richard, A., Bernot, G.: The smbionet method for discovering models of gene regulatory networks. Genes Genom. Genomics 3(1), 15–22 (2009)

    Google Scholar 

  16. Li, Z., Liu, S., Yang, Q.: Incoherent inputs enhance the robustness of biological oscillators. Cell Syst. 5(1), 72–81 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma, W., Lai, L., Ouyang, Q., Tang, C.: Robustness and modular design of the drosophila segment polarity network. Molec. Syst. Biol. 2(1), 70 (2006)

    Article  Google Scholar 

  18. Melkman, A.A., Tamura, T., Akutsu, T.: Determining a singleton attractor of an and/or boolean network in o (1.587 n) time. Inf. Process. Lett. 110(14–15), 565–569 (2010)

    Google Scholar 

  19. Page, K.M.: Oscillations in well-mixed, deterministic feedback systems: beyond ring oscillators. J. Theor. Biol. 481, 44–53 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  20. Paulevé, L., Kolčák, J., Chatain, T., Haar, S.: Reconciling qualitative, abstract, and scalable modeling of biological networks. Nat. Commun. 11(1), 4256 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Paulevé, L., Richard, A.: Static analysis of Boolean networks based on interaction graphs: a survey. Electron. Notes Theor. Comput. Sci. 284, 93–104 (2012)

    Article  Google Scholar 

  22. Perez-Carrasco, R., Barnes, C.P., Schaerli, Y., Isalan, M., Briscoe, J., Page, K.M.: Combining a toggle switch and a repressilator within the ac-dc circuit generates distinct dynamical behaviors. Cell Syst. 6(4), 521–530 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Potvin-Trottier, L., Lord, N.D., Vinnicombe, G., Paulsson, J.: Synchronous long-term oscillations in a synthetic gene circuit. Nature 538(7626), 514–517 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Qiao, L., Zhao, W., Tang, C., Nie, Q., Zhang, L.: Network topologies that can achieve dual function of adaptation and noise attenuation. Cell Syst. 9(3), 271–285 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Remy, É., Ruet, P., Thieffry, D.: Graphic requirements for multistability and attractive cycles in a boolean dynamical framework. Adv. Appl. Math. 41(3), 335–350 (2008)

    Article  Google Scholar 

  26. Ribeiro, T., Folschette, M., Magnin, M., Inoue, K.: Learning any semantics for dynamical systems represented by logic programs (2020)

    Google Scholar 

  27. Richard, A.: Negative circuits and sustained oscillations in asynchronous automata networks. Adv. Appl. Math. 44(4), 378–392 (2010)

    Article  Google Scholar 

  28. Richard, A., Comet, J.P.: Necessary conditions for multistationarity in discrete dynamical systems. Disc. Appl. Math. 155(18), 2403–2413 (2007)

    Article  Google Scholar 

  29. Richard, A., Tonello, E.: Attractor separation and signed cycles in asynchronous boolean networks. Theor. Comput. Sci., 113706 (2023)

    Google Scholar 

  30. Sun., H., Comet., J., Folschette., M., Magnin., M.: Condition for sustained oscillations in repressilator based on a hybrid modeling of gene regulatory networks. In: Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOINFORMATICS, pp. 29–40. INSTICC, SciTePress (2023). https://doi.org/10.5220/0011614300003414

  31. Sun, H., Folschette, M., Magnin, M.: Limit cycle analysis of a class of hybrid gene regulatory networks. In: Computational Methods in Systems Biology: 20th International Conference, CMSB 2022, Bucharest, Romania, 14–16 September 2022, Proceedings, pp. 217–236. Springer, Heidelberg (2022). DOI: September

    Google Scholar 

  32. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42(3), 563–585 (1973)

    Article  CAS  PubMed  Google Scholar 

  33. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. J. Theor. Biol. 153(1), 1–23 (1991)

    Article  Google Scholar 

  34. Tomazou, M., Barahona, M., Polizzi, K.M., Stan, G.B.: Computational re-design of synthetic genetic oscillators for independent amplitude and frequency modulation. Cell Syst. 6(4), 508–520 (2018)

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, F., et al.: Independent control of amplitude and period in a synthetic oscillator circuit with modified repressilator. Commun. Biol. 5(1), 23 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Gilles Bernot and Jean-Paul Comet for their fruitful discussions. We would also like to thank Coraly Soto for her internship report which helped us in the early stage of this work to find features to predict the existence of a periodic attractor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglu Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, H., Folschette, M., Magnin, M. (2023). Condition for Periodic Attractor in 4-Dimensional Repressilators. In: Pang, J., Niehren, J. (eds) Computational Methods in Systems Biology. CMSB 2023. Lecture Notes in Computer Science(), vol 14137. Springer, Cham. https://doi.org/10.1007/978-3-031-42697-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42697-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42696-4

  • Online ISBN: 978-3-031-42697-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation